中国全科医学 ›› 2022, Vol. 25 ›› Issue (05): 636-642.DOI: 10.12114/j.issn.1007-9572.2021.01.114
所属专题: 肿瘤最新文章合辑
• 前沿进展 • 上一篇
衡立1, 张立国1, 董婧婷1, 李治国2,*, 曹凤宏1,*
收稿日期:
2021-07-10
修回日期:
2021-12-10
出版日期:
2022-02-15
发布日期:
2022-01-29
通讯作者:
李治国,曹凤宏
基金资助:
Molecular Mechanism of Oxidative Stress Mediated Androgen Receptor Signal Reactivation in Prostatic Cancer Progression
HENG Li1,ZHANG Liguo1,DONG Jingting1,LI Zhiguo2*,CAO Fenghong1*
1.Department of Urology,North China University of Science and Technology Affiliated Hospital,Tangshan 063000,China
2.Department of Public Health,North China University of Science and Technology,Tangshan 063000,China
*Corresponding authors:LI Zhiguo,Associate professor,Master supervisor;E-mail:lzg1017@163.com
CAO Fenghong,Chief physician,Master supervisor;E-mail:caofenghong@163.com
Received:
2021-07-10
Revised:
2021-12-10
Published:
2022-02-15
Online:
2022-01-29
摘要: 晚期前列腺癌患者经过去势治疗后,体内产生大量的活性氧加重氧化应激。本文阐述了氧化应激调节雄激素受体(AR)及其信号通路的不同分子机制,例如氧化应激介导转录因子诱导AR过表达,导致瘤内局部雄激素水平升高,增加AR对低水平雄激素的敏感性以及诱导旁路途经导致AR激活,进而探究前列腺癌向去势抵抗性前列腺癌演进的分子机制,为势抵抗性前列腺癌的预防、诊断、治疗提供新的思路。
中图分类号:
HENG Li, ZHANG Liguo, DONG Jingting, LI Zhiguo, CAO Fenghong.
Molecular Mechanism of Oxidative Stress Mediated Androgen Receptor Signal Reactivation in Prostatic Cancer Progression [J]. Chinese General Practice, 2022, 25(05): 636-642.
[1] | SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics,2019 [J]. CA Cancer J Clin,2019,69(1):7-34. DOI:10.3322/caac.21551. |
[2] | MANSINHO A, MACEDO D, FERNANDES I,et al. Castration-resistant prostate cancer:mechanisms,targets and treatment[J]. Adv Exp Med Biol,2018,1096:117-133. DOI:10.1007/978-3-319-99286-0_7. |
[3] | WANG K S, RUAN H L, XU T B,et al. Recent advances on the progressive mechanism and therapy in castration-resistant prostate cancer[J]. Onco Targets Ther,2018,11:3167-3178. DOI:10.2147/OTT.S159777. |
[4] | JAKUBCZYK K, DEC K, KATDUNSKA J,et al. Reactive oxygen species - sources,functions,oxidative damage[J]. Pol Merkur Lekarski,2020,48(284):124-127. |
[5] | CRONA D J, WHANG Y E. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance[J]. Cancers(Basel),2017,9(6):E67. DOI:10.3390/cancers9060067. |
[6] | TAM N N, GAO Y, LEUNG Y K,et al. Androgenic regulation of oxidative stress in the rat prostate:involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth[J]. Am J Pathol,2003,163(6):2513-2522. DOI:10.1016/S0002-9440(10)63606-1. |
[7] | SHIOTA M, FUJIMOTO N, ITSUMI M,et al. Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress[J]. Ann Oncol,2017,28(3):569-575. DOI:10.1093/annonc/mdw646. |
[8] | FAN X C, WAARDENBERG A J, DEMUTH M,et al. TWIST1 homodimers and heterodimers orchestrate lineage-specific differentiation[J]. Mol Cell Biol,2020,40(11):e00663-19. DOI:10.1128/mcb.00663-19. |
[9] | SHIOTA M, KASHIWAGI E, YOKOMIZO A,et al. Interaction between docetaxel resistance and castration resistance in prostate cancer:implications of Twist1,YB-1,and androgen receptor[J]. Prostate,2013,73(12):1336-1344. DOI:10.1002/pros.22681. |
[10] | FAN J X, FAN Y R, WANG X,et al. PLCε regulates prostate cancer mitochondrial oxidative metabolism and migration via upregulation of Twist1[J]. J Exp Clin Cancer Res,2019,38(1):337. DOI:10.1186/s13046-019-1323-8. |
[11] | LYABIN D N, ELISEEVA I A, OVCHINNIKOV L P. YB-1 protein:functions and regulation[J]. Wiley Interdiscip Rev RNA,2014,5(1):95-110. DOI:10.1002/wrna.1200. |
[12] | SHIOTA M, SEKINO Y, TSUKAHARA S,et al. Gene amplification of YB-1 in castration-resistant prostate cancer in association with aberrant androgen receptor expression[J]. Cancer Sci,2021,112(1):323-330. DOI:10.1111/cas.14695. |
[13] | EVDOKIMOVA V, TOGNON C, NG T,et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition[J]. Cancer Cell,2009,15(5):402-415. DOI:10.1016/j.ccr.2009.03.017. |
[14] | MALINEN M, NISKANEN E A, KAIKKONEN M U,et al. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome[J]. Nucleic Acids Res,2017,45(2):619-630. DOI:10.1093/nar/gkw855. |
[15] | GLOIRE G, LEGRAND-POELS S, PIETTE J. NF-kappaB activation by reactive oxygen species:fifteen years later[J]. Biochem Pharmacol,2006,72(11):1493-1505. DOI:10.1016/j.bcp.2006.04.011. |
[16] | THOMAS-JARDIN S E, DAHL H, NAWAS A F,et al. NF-κB signaling promotes castration-resistant prostate cancer initiation and progression[J]. Pharmacol Ther,2020,211:107538. DOI:10.1016/j.pharmthera.2020.107538. |
[17] | NADIMINTY N, TUMMALA R, LIU C F,et al. NF-κB2/p52:c-myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer[J]. Mol Cancer Ther,2015,14(8):1884-1895. DOI:10.1158/1535-7163.MCT-14-1057. |
[18] | SHIOTA M, YOKOMIZO A, TAKEUCHI A,et al. Protein kinase C regulates Twist1 expression via NF-κB in prostate cancer[J]. Endocr Relat Cancer,2017,24(4):171-180. DOI:10.1530/ERC-16-0384. |
[19] | LIN Y T, CHEN L K, JIAN D Y,et al. Visfatin promotes monocyte adhesion by upregulating ICAM-1 and VCAM-1 expression in endothelial cells via activation of p38-PI3K-Akt signaling and subsequent ROS production and IKK/NF-κB activation[J]. Cell Physiol Biochem,2019,52(6):1398-1411. DOI:10.33594/000000098. |
[20] | BARLOW C A, KITIPHONGSPATTANA K, SIDDIQUI N,et al. Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells[J]. Apoptosis,2008,13(5):681-692. DOI:10.1007/s10495-008-0203-z. |
[21] | BOLDUC J A, COLLINS J A, LOESER R F. Reactive oxygen species,aging and articular cartilage homeostasis[J]. Free Radic Biol Med,2019,132:73-82. DOI:10.1016/j.freeradbiomed.2018.08.038. |
[22] | HASLE N, MATREYEK K A, FOWLER D M. The impact of genetic variants on pten molecular functions and cellular phenotypes[J]. Cold Spring Harb Perspect Med,2019,9(11):a036228. DOI:10.1101/cshperspect.a036228. |
[23] | CAI B W, OSTROWSKI M C, LEONE G,et al. Loss of PTEN accelerates NKX3.1 degradation to promote prostate cancer progression[J]. Cancer Res,2019,79(16):4124-4134. DOI:10.1158/0008-5472.CAN-18-4110. |
[24] | LI J Z, FU X Q, CAO S B,et al. Membrane-associated androgen receptor(AR)potentiates its transcriptional activities by activating heat shock protein 27(HSP27)[J]. J Biol Chem,2018,293(33):12719-12729. DOI:10.1074/jbc.RA118.003075. |
[25] | KE J R, WU G R, ZHANG J,et al. Melanoma migration is promoted by prion protein via Akt-hsp27 signaling axis[J]. Biochem Biophys Res Commun,2020,523(2):375-381. DOI:10.1016/j.bbrc.2019.12.042. |
[26] | YANG L, XIE S Z, JAMALUDDIN M S,et al. Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate,FOXO3a,and their roles in apoptosis of LNCaP prostate cancer cells[J]. J Biol Chem,2005,280(39):33558-33565. DOI:10.1074/jbc.M504461200. |
[27] | OBSIL T, OBSILOVA V. Structural aspects of protein kinase ASK1 regulation[J]. Adv Biol Regul,2017,66:31-36. DOI:10.1016/j.jbior.2017.10.002. |
[28] | HSIEH C C, PAPACONSTANTINOU J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice[J]. FASEB J,2006,20(2):259-268. DOI:10.1096/fj.05-4376com. |
[29] | HUANG W C, LI X Y, LIU J,et al. Activation of androgen receptor,lipogenesis,and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells[J]. Mol Cancer Res,2012,10(1):133-142. DOI:10.1158/1541-7786.MCR-11-0206. |
[30] | ZHANG Z, HOU X Z, SHAO C,et al. Plk1 inhibition enhances the efficacy of androgen signaling blockade in castration-resistant prostate cancer[J]. Cancer Res,2014,74(22):6635-6647. DOI:10.1158/0008-5472.CAN-14-1916. |
[31] | SHARIFI N, HURT E M, THOMAS S B,et al. Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation:implications for castration-resistant prostate cancer[J]. Clin Cancer Res,2008,14(19):6073-6080. DOI:10.1158/1078-0432.CCR-08-0591. |
[32] | BARNARD M, QUANSON J L, MOSTAGHEL E,et al. 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3(AKR1C3):Implications for castration resistant prostate cancer[J]. J Steroid Biochem Mol Biol,2018,183:192-201. DOI:10.1016/j.jsbmb.2018.06.013. |
[33] | FENG T T, ZHAO R, SUN F F,et al. TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression[J]. Oncogene,2020,39(2):356-367. DOI:10.1038/s41388-019-0991-3. |
[34] | CHHIPA R R, LEE K S, ONATE S,et al. Prx1 enhances androgen receptor function in prostate cancer cells by increasing receptor affinity to dihydrotestosterone[J]. Mol Cancer Res,2009,7(9):1543-1552. DOI:10.1158/1541-7786.MCR-08-0546. |
[35] | WANG L, SONG G, CHANG X,et al. The role of TXNDC5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway[J]. Oncogene,2015,34(36):4735-4745. DOI:10.1038/onc.2014.401. |
[36] | TAN F B, ZHU H, HE X,et al. Role of TXNDC5 in tumorigenesis of colorectal cancer cells:In vivo and in vitro evidence[J]. Int J Mol Med,2018,42(2):935-945. DOI:10.3892/ijmm.2018.3664. |
[37] | SAMANTA D, SEMENZA G L. Maintenance of redox homeostasis by hypoxia-inducible factors[J]. Redox Biol,2017,13:331-335. DOI:10.1016/j.redox.2017.05.022. |
[38] | ZHANG Y, HAN S J, PARK I,et al. Redox regulation of the tumor suppressor PTEN by hydrogen peroxide and tert-butyl hydroperoxide[J]. Int J Mol Sci,2017,18(5):E982. DOI:10.3390/ijms18050982. |
[39] | KIM K Y, PARK K I, KIM S H,et al. Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells[J]. Int J Mol Sci,2017,18(5):E1088. DOI:10.3390/ijms18051088. |
[40] | ZHAO J C, FONG K W, JIN H J,et al. FOXA1 Acts upstream of GATA2 and AR in hormonal regulation of gene expression[J]. Oncogene,2016,35(33):4335-4344. DOI:10.1038/onc.2015.496. |
[41] | CHEN H L, LIBERTINI S J, WANG Y,et al. ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines[J]. J Biol Chem,2010,285(4):2368-2374. DOI:10.1074/jbc.M109.049379. |
[42] | KUMARI N, DWARAKANATH B S, DAS A,et al. Role of interleukin-6 in cancer progression and therapeutic resistance[J]. Tumour Biol,2016,37(9):11553-11572. DOI:10.1007/s13277-016-5098-7. |
[43] | XU L J, CHEN X D, SHEN M J,et al. Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels[J]. Mol Oncol,2018,12(3):269-286. DOI:10.1002/1878-0261.12135. |
[44] | MOHANTY S K, YAGIZ K, PRADHAN D,et al. STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer[J]. Oncotarget,2017,8(49):85997-86010. DOI:10.18632/oncotarget.20844. |
[45] | HU T C, YEH J E, PINELLO L,et al. Impact of the N-terminal domain of STAT3 in STAT3-dependent transcriptional activity[J]. Mol Cell Biol,2015,35(19):3284-3300. DOI:10.1128/MCB.00060-15. |
[46] | FENG S T, TANG Q Z, SUN M,et al. Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2[J]. Mol Cancer Ther,2009,8(3):665-671. DOI:10.1158/1535-7163.MCT-08-0823. |
[47] | VIVARELLI F, CANISTRO D, CIRILLO S,et al. Co-carcinogenic effects of vitamin E in prostate[J]. Sci Rep,2019,9(1):11636. DOI:10.1038/s41598-019-48213-1. |
[48] | VANCE T M, SU J, FONTHAM E T,et al. Dietary antioxidants and prostate cancer:a review[J]. Nutr Cancer,2013,65(6):793-801. DOI:10.1080/01635581.2013.806672. |
[49] | HUANG Y, KHOR T O, SHU L M,et al. A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation[J].J Nutr,2012,142(5):818-823. DOI:10.3945/jn.111.153114. |
[50] | OGAWA Y, SAITO Y, NISHIO K,et al. Gamma-tocopheryl quinone,not alpha-tocopheryl quinone,induces adaptive response through up-regulation of cellular glutathione and cysteine availability via activation of ATF4[J]. Free Radic Res,2008,42(7):674-687. DOI:10.1080/10715760802277396. |
[51] | MIRAHMADI M, AZIMI-HASHEMI S, SABURI E,et al. Potential inhibitory effect of lycopene on prostate cancer[J]. Biomed Pharmacother,2020,129:110459. DOI:10.1016/j.biopha.2020.110459. |
[52] | BRATT O. A comparison of lycopene and orchidectomy vs orchidectomy alone in the management of advanced prostate cancer[J]. BJU Int,2005,95(1):192. DOI:10.1111/j.1464-410X.2005.4440_6.x. |
[53] | LIMPENS J, SCHRÖDER F H, DE RIDDER C M,et al. Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice[J]. J Nutr,2006,136(5):1287-1293. DOI:10.1093/jn/136.5.1287. |
[54] | BASAK P, SADHUKHAN P, SARKAR P,et al. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy[J]. Toxicol Rep,2017,4:306-318. DOI:10.1016/j.toxrep.2017.06.002. |
[55] | KHURANA N, SIKKA S C. Targeting crosstalk between nrf-2,NF-κB and androgen receptor signaling in prostate cancer[J]. Cancers(Basel),2018,10(10):E352. DOI:10.3390/cancers10100352. |
[56] | SCHULTZ M A, ABDEL-MAGEED A B, MONDAL D. The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells[J]. Cancers:Basel,2010,2(2):1354-1378. DOI:10.3390/cancers2021354. |
[57] | KHURANA N, CHANDRA P K, KIM H,et al. Bardoxolone-methyl(CDDO-me)suppresses androgen receptor and its splice-variant AR-V7 and enhances efficacy of enzalutamide in prostate cancer cells[J]. Antioxidants(Basel),2020,9(1):E68. DOI:10.3390/antiox9010068. |
[58] | KHURANA N, KIM H, CHANDRA P K,et al. Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells:Advocating a potent pharmaceutical combination against castration-resistant prostate cancer[J]. Oncol Rep,2017,38(5):2774-2786. DOI:10.3892/or.2017.5932. |
[59] | XU C J, SHEN G X, CHEN C,et al. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha,IKK pathway in human prostate cancer PC-3 cells[J]. Oncogene,2005,24(28):4486-4495. DOI:10.1038/sj.onc.1208656. |
[60] | ZHOU D Y, ZHAO S Q, DU Z Y,et al. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation[J]. Oncol Lett,2016,11(6):4160-4166. DOI:10.3892/ol.2016.4536. |
[61] | SHIN J W, CHUN K S, KIM D H,et al. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification[J]. Biochem Pharmacol,2020,173:113820. DOI:10.1016/j.bcp.2020.113820. |
[1] | 王婷婷, 唐勇, 张文轲, 李志刚. 高尿酸血症运动干预的研究进展[J]. 中国全科医学, 2025, 28(30): 3841-3846. |
[2] | 徐艳朋, 黄佩, 张平平, 罗艳, 施晓琪, 吴柳松, 陈艳, 何志旭. 急性T淋巴细胞白血病β-肾上腺素受体的表达情况及临床意义研究[J]. 中国全科医学, 2025, 28(27): 3391-3398. |
[3] | 周晟, 邓长生, 邹冠炀, 宋健平. 疟疾心血管疾病并发症发病机制的研究进展[J]. 中国全科医学, 2025, 28(27): 3466-3472. |
[4] | 王亚静, 段晓阳, 侯冉, 黄娅婕, 史健. 表皮生长因子受体阳性非小细胞肺癌脑转移患者靶向联合治疗研究进展[J]. 中国全科医学, 2025, 28(26): 3328-3337. |
[5] | 黄雨琳, 王浩云, 李燕梅, 萧雪英. 胃癌患者化疗期间症状群的范围综述[J]. 中国全科医学, 2025, 28(26): 3338-3344. |
[6] | 杨其芬, 赵惠亮, 郭永胜, 渠景连. Jagged1/Notch1信号通路对特发性肺纤维化过程中内皮间质转化的影响研究[J]. 中国全科医学, 2025, 28(25): 3151-3160. |
[7] | 李苗秀, 朱博文, 孔令军, 房敏. 青少年脊柱侧弯保守治疗临床评估工具研究进展[J]. 中国全科医学, 2025, 28(24): 3079-3088. |
[8] | 肖瑶, 万钧. 直接口服抗凝药在静脉血栓栓塞特殊人群中的临床应用[J]. 中国全科医学, 2025, 28(24): 3066-3071. |
[9] | 刘银银, 隋鸿平, 李婷婷, 姜桐桐, 史铁英, 夏云龙. 乳腺癌治疗相关心脏毒性风险预测模型的研究进展[J]. 中国全科医学, 2025, 28(24): 3072-3078. |
[10] | 阮万百, 李俊峰, 尹艳梅, 彭磊, 朱克祥. 胰腺癌靶向治疗及免疫治疗的研究新进展[J]. 中国全科医学, 2025, 28(23): 2950-2960. |
[11] | 周连鹏, 李伟峰, 董新刚, 王晓元. 铜稳态调节机制在认知障碍中的作用探析[J]. 中国全科医学, 2025, 28(23): 2941-2949. |
[12] | 陈飞, 王金英, 于海搏, 李新, 张佳佳, 申曼, 詹晓凯, 汤然, 范斯斌, 赵凤仪, 张天宇, 黄仲夏. 中性粒细胞明胶酶相关运载蛋白、T细胞免疫球蛋白粘蛋白受体1、血管细胞黏附分子-1和激活素A升高在新诊断多发性骨髓瘤患者中的意义研究[J]. 中国全科医学, 2025, 28(22): 2740-2749. |
[13] | 杜琼靓, 林白浪, 郭洪花. 群组育儿保健模式的研究进展及启示[J]. 中国全科医学, 2025, 28(21): 2672-2678. |
[14] | 董浩铖, 郝潇, 安东, 李浩翰, 李树仁. 射血分数超常的心力衰竭的研究进展[J]. 中国全科医学, 2025, 28(21): 2692-2696. |
[15] | 朱子一, 何贵新, 秦伟彬, 宋惠, 张利文, 唐伟智, 杨斐斐, 刘凌云, 欧阳彬. 线粒体自噬改善心肌梗死后心肌纤维化及其中医药干预的研究进展[J]. 中国全科医学, 2025, 28(18): 2294-2300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||