[1] |
|
[2] |
HEWLETT J C, KROPSKI J A, BLACKWELL T S. Idiopathic pulmonary fibrosis:epithelial-mesenchymal interactions and emerging therapeutic targets[J]. Matrix Biol, 2018, 71/72:112-127. DOI: 10.1016/j.matbio.2018.03.021.
|
[3] |
WU Q, ZHANG K J, JIANG S M,et al. p53:a key protein that regulates pulmonary fibrosis[J]. Oxid Med Cell Longev, 2020, 2020:6635794. DOI: 10.1155/2020/6635794.
|
[4] |
LEÓN-ROMÁN F, VALENZUELA C, MOLINA-MOLINA M. Idiopathic pulmonary fibrosis[J]. Med Clínica Engl Ed, 2022, 159(4):189-194. DOI: 10.1016/j.medcle.2022.02.023.
|
[5] |
DING D Y, GAO R, XUE Q F,et al. Genomic fingerprint associated with familial idiopathic pulmonary fibrosis:a review[J]. Int J Med Sci, 2023, 20(3):329-345. DOI: 10.7150/ijms.80358.
|
[6] |
PEI Z, QIN Y F, FU X H,et al. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model[J]. Redox Biol, 2022, 57:102509. DOI: 10.1016/j.redox.2022.102509.
|
[7] |
TALBOTT H E, MASCHARAK S, GRIFFIN M,et al. Wound healing,fibroblast heterogeneity,and fibrosis[J]. Cell Stem Cell, 2022, 29(8):1161-1180. DOI: 10.1016/j.stem.2022.07.006.
|
[8] |
YOSHIMATSU Y, WAKABAYASHI I, KIMURO S,et al. TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation[J]. Cancer Sci, 2020, 111(7):2385-2399. DOI: 10.1111/cas.14455.
|
[9] |
|
[10] |
INUI N, SAKAI S, KITAGAWA M. Molecular pathogenesis of pulmonary fibrosis,with focus on pathways related to TGF-β and the ubiquitin-proteasome pathway[J]. Int J Mol Sci, 2021, 22(11):6107. DOI: 10.3390/ijms22116107.
|
[11] |
ZHAO W M, WANG L, WANG Y X,et al. Injured endothelial cell:a risk factor for pulmonary fibrosis[J]. Int J Mol Sci, 2023, 24(10):8749. DOI: 10.3390/ijms24108749.
|
[12] |
|
[13] |
于娜,周家为,李霞,等.成人特发性肺纤维化(更新)和进行性肺纤维化临床实践指南(2022版)解读[J].中国现代医学杂志,2023,33(14):1-8.
|
[14] |
ZHANG J J, WANG H X, CHEN H B,et al. ATF3-activated accelerating effect of LINC00941/lncIAPF on fibroblast-to-myofibroblast differentiation by blocking autophagy depending on ELAVL1/HuR in pulmonary fibrosis[J]. Autophagy, 2022, 18(11):2636-2655. DOI: 10.1080/15548627.2022.2046448.
|
[15] |
YOSHIMATSU Y, WAKABAYASHI I, KIMURO S,et al. TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation[J]. Cancer Sci, 2020, 111(7):2385-2399. DOI: 10.1111/cas.14455.
|
[16] |
SUZUKI T, CARRIER E J, TALATI M H,et al. Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(1):L118-126. DOI: 10.1152/ajplung.00296.2017.
|
[17] |
GAIKWAD A V, LU W Y, DEY S,et al. Endothelial-to-mesenchymal transition:a precursor to pulmonary arterial remodelling in patients with idiopathic pulmonary fibrosis[J]. ERJ Open Res, 2023, 9(2):00487-02022. DOI: 10.1183/23120541.00487-2022.
|
[18] |
ASOSINGH K, COMHAIR S, MAVRAKIS L,et al. Single-cell transcriptomic profile of human pulmonary artery endothelial cells in health and pulmonary arterial hypertension[J]. Sci Rep, 2021, 11(1):14714. DOI: 10.1038/s41598-021-94163-y.
|
[19] |
GAIKWAD A V, EAPEN M S, MCALINDEN K D,et al. Endothelial to mesenchymal transition(EndMT)and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis[J]. Expert Rev Respir Med, 2020, 14(10):1027-1043. DOI: 10.1080/17476348.2020.1795832.
|
[20] |
LECCE L, XU Y, V'GANGULA B,et al. Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype[J]. J Clin Invest, 2021, 131(15):e131178. DOI: 10.1172/JCI131178.
|
[21] |
YU W K, CHEN W C, SU V Y,et al. Nintedanib inhibits endothelial mesenchymal transition in bleomycin-induced pulmonary fibrosis via focal adhesion kinase activity reduction[J]. Int J Mol Sci, 2022, 23(15):8193. DOI: 10.3390/ijms23158193.
|
[22] |
ZHOU B H, LIN W L, LONG Y L,et al. Notch signaling pathway:architecture,disease,and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1):95. DOI: 10.1038/s41392-022-00934-y.
|
[23] |
HUANG C, YANG D W, YE G W,et al. Vascular Notch signaling in stress hematopoiesis[J]. Front Cell Dev Biol, 2020, 8:606448. DOI: 10.3389/fcell.2020.606448.
|
[24] |
YANG D, XU P, SU H B,et al. The histone methyltransferase DOT1L is a new epigenetic regulator of pulmonary fibrosis[J]. Cell Death Dis, 2022, 13(1):60. DOI: 10.1038/s41419-021-04365-5.
|
[25] |
|
[26] |
IOANNOU M, KOUVARAS E, PAPAMICHALI R,et al. Smad4 and epithelial-mesenchymal transition proteins in colorectal carcinoma:an immunohistochemical study[J]. J Mol Histol, 2018, 49(3):235-244. DOI: 10.1007/s10735-018-9763-6.
|
[27] |
ZHU X L, WANG Y Y, SOAITA I,et al. Acetate controls endothelial-to-mesenchymal transition[J]. Cell Metab, 2023, 35(7):1163-1178.e10. DOI: 10.1016/j.cmet.2023.05.010.
|
[28] |
韩姣,王华兵,徐玲文,等. γ-分泌酶抑制剂在肺纤维化上皮间质转化中的作用[J]. 天津医药, 2022, 50(9):917-920. DOI: 10.11958/20220307.
|
[29] |
YIN Q, WANG W H, CUI G B,et al. The expression levels of Notch-related signaling molecules in pulmonary microvascular endothelial cells in bleomycin-induced rat pulmonary fibrosis[J]. Physiol Res, 2017, 66(2):305-315. DOI: 10.33549/physiolres.933356.
|
[30] |
CAO Z W, LIS R, GINSBERG M,et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis[J]. Nat Med, 2016, 22(2):154-162. DOI: 10.1038/nm.4035.
|