| [1] | WANG L H,YU W ,YIN X J ,et al. Prevalence of osteoporosis and fracture in China:the China osteoporosis prevalence study[J]. JAMA Netw Open ,2021 ,4 (8):e2121106. DOI:10.1001/jamanetworkopen.2021.21106 . | 
																													
																						| [2] | CONTI V,RUSSOMANNO G ,CORBI G ,et al. A polymorphism at the translation start site of the vitamin D receptor gene is associated with the response to anti-osteoporotic therapy in postmenopausal women from southern Italy[J]. Int J Mol Sci ,2015 ,16 (3):5452-5466. DOI:10.3390/ijms16035452 . | 
																													
																						| [3] | COPPÉ J P,PATIL C K ,RODIER F ,et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol ,2008 ,6 (12):2853-2868. DOI:10.1371/journal.pbio.0060301 . | 
																													
																						| [4] | ZHAO R L,JIN X Y ,LI A ,et al. Precise diabetic wound therapy:PLS nanospheres eliminate senescent cells via DPP4 targeting and PARP1 activation[J]. Adv Sci ,2022 ,9 (1):e2104128. DOI:10.1002/advs.202104128 . | 
																													
																						| [5] | JIN W N,SHI K B ,HE W Y ,et al. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition[J]. Nat Neurosci ,2021 ,24 (1):61-73. DOI:10.1038/s41593-020-00745-w . | 
																													
																						| [6] | HU L F,YIN C ,ZHAO F ,et al. Mesenchymal stem cells:cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment[J]. Int J Mol Sci ,2018 ,19 (2):360. DOI:10.3390/ijms19020360 . | 
																													
																						| [7] | DING P,GAO C ,GAO Y S ,et al. Osteocytes regulate senescence of bone and bone marrow[J]. eLife ,2022 ,11 :e81480. DOI:10.7554/eLife.81480 . | 
																													
																						| [8] | SINHA S,SINHA A ,DONGRE P ,et al. Organelle dysfunction upon asrij depletion causes aging-like changes in mouse hematopoietic stem cells[J]. Aging Cell ,2022 ,21 (4):e13570. DOI:10.1111/acel.13570 . | 
																													
																						| [9] | TRESGUERRES F G F,TORRES J ,LÓPEZ-QUILES J ,et al. The osteocyte:a multifunctional cell within the bone[J]. Ann Anat ,2020 ,227 :151422. DOI:10.1016/j.aanat.2019.151422 . | 
																													
																						| [10] | BLOCK T J,MARINKOVIC M ,TRAN O N ,et al. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies[J]. Stem Cell Res Ther ,2017 ,8 (1):239. DOI:10.1186/s13287-017-0688-x . | 
																													
																						| [11] | ZHUANG Y,LI D ,FU J Q ,et al. Comparison of biological properties of umbilical cord-derived mesenchymal stem cells from early and late passages:immunomodulatory ability is enhanced in aged cells[J]. Mol Med Rep ,2015 ,11 (1):166-174. DOI:10.3892/mmr.2014.2755 . | 
																													
																						| [12] | WANG L P,ZHANG H ,XIAO X ,et al. Small extracellular vesicles maintain homeostasis of senescent mesenchymal stem cells at least through excreting harmful lipids[J]. Stem Cells Dev ,2023 ,32 (17/18):565-579. DOI:10.1089/scd.2023.0079 . | 
																													
																						| [13] | KIM M,BAE Y K ,UM S ,et al. A small-sized population of human umbilical cord blood-derived mesenchymal stem cells shows high stemness properties and therapeutic benefit[J]. Stem Cells Int ,2020 ,2020 :5924983. DOI:10.1155/2020/5924983 . | 
																													
																						| [14] | LUNYAK V V,AMARO-ORTIZ A ,GAUR M . Mesenchymal stem cells secretory responses:senescence messaging secretome and immunomodulation perspective[J]. Front Genet ,2017 ,8 :220. DOI:10.3389/fgene.2017.00220 . | 
																													
																						| [15] | KWON J H,KIM M ,UM S ,et al. Senescence-associated secretory phenotype suppression mediated by small-sized mesenchymal stem cells delays cellular senescence through TLR2 and TLR5 signaling[J]. Cells ,2021 ,10 (1):63. DOI:10.3390/cells10010063 . | 
																													
																						| [16] | CHOU L Y,HO C T ,HUNG S C . Paracrine senescence of mesenchymal stromal cells involves inflammatory cytokines and the NF-κB pathway[J]. Cells ,2022 ,11 (20):3324. DOI:10.3390/cells11203324 . | 
																													
																						| [17] | LEHMANN J,NARCISI R ,FRANCESCHINI N ,et al. WNT/beta-catenin signalling interrupts a senescence-induction cascade in human mesenchymal stem cells that restricts their expansion[J]. Cell Mol Life Sci ,2022 ,79 (2):82. DOI:10.1007/s00018-021-04035-x . | 
																													
																						| [18] | VOSKAMP C,ANDERSON L A ,KOEVOET W J ,et al. TWIST1 controls cellular senescence and energy metabolism in mesenchymal stem cells[J]. Eur Cell Mater ,2021 ,42 :401-414. DOI:10.22203/eCM.v042a25 . | 
																													
																						| [19] | LEE J Y,YU K R ,LEE B C ,et al. GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging[J]. Exp Mol Med ,2018 ,50 (5):1-12. DOI:10.1038/s12276-018-0092-3 . | 
																													
																						| [20] | ZHENG X L,WANG Q X ,XIE Z ,et al. The elevated level of IL-1α in the bone marrow of aged mice leads to MSC senescence partly by down-regulating Bmi-1[J]. Exp Gerontol ,2021 ,148 :111313. DOI:10.1016/j.exger.2021.111313 . | 
																													
																						| [21] | SHANG J,YAO Y ,FAN X ,et al. MiR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways[J]. Biochim Biophys Acta ,2016 ,1863 (4):520-532. DOI:10.1016/j.bbamcr.2016.01.005 . | 
																													
																						| [22] | WEILNER S,SCHRAML E ,WIESER M ,et al. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells[J]. Aging Cell ,2016 ,15 (4):744-754. DOI:10.1111/acel.12484 . | 
																													
																						| [23] | TOMÉ M,SEPÚLVEDA J C ,DELGADO M ,et al. MiR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity[J]. Stem Cells ,2014 ,32 (8):2229-2244. DOI:10.1002/stem.1699 . | 
																													
																						| [24] | MATO-BASALO R,MORENTE-LÓPEZ M ,ARNTZ O J ,et al. Therapeutic potential for regulation of the nuclear factor kappa-B transcription factor p65 to prevent cellular senescence and activation of pro-inflammatory in mesenchymal stem cells[J]. Int J Mol Sci ,2021 ,22 (7):3367. DOI:10.3390/ijms22073367 . | 
																													
																						| [25] | SORIANI A,IANNITTO M L ,RICCI B ,et al. Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1[J]. J Immunol ,2014 ,193 (2):950-960. DOI:10.4049/jimmunol.1400271 . | 
																													
																						| [26] | SHARMA C,WANG H X ,LI Q L ,et al. Protein acyltransferase DHHC3 regulates breast tumor growth,oxidative stress,and senescence[J]. Cancer Res ,2017 ,77 (24):6880-6890. DOI:10.1158/0008-5472.CAN-17-1536 . | 
																													
																						| [27] | LEFÈVRE L,IACOVONI J S ,MARTINI H ,et al. Kidney inflammaging is promoted by CCR2+ macrophages and tissue-derived micro-environmental factors[J]. Cell Mol Life Sci ,2021 ,78 (7):3485-3501. DOI:10.1007/s00018-020-03719-0 . | 
																													
																						| [28] | FUJIU K,MANABE I ,NAGAI R . Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice[J]. J Clin Investig ,2011 ,121 (9):3425-3441. DOI:10.1172/JCI57582 . | 
																													
																						| [29] | HEARPS A C,MARTIN G E ,ANGELOVICH T A ,et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function[J]. Aging Cell ,2012 ,11 (5):867-875. DOI:10.1111/j.1474-9726.2012.00851.x . | 
																													
																						| [30] | ZHANG B,BAILEY W M ,BRAUN K J ,et al. Age decreases macrophage IL-10 expression:implications for functional recovery and tissue repair in spinal cord injury[J]. Exp Neurol ,2015 ,273 :83-91. DOI:10.1016/j.expneurol.2015.08.001 . | 
																													
																						| [31] | HOLT D J,GRAINGER D W . Senescence and quiescence induced compromised function in cultured macrophages[J]. Biomaterials ,2012 ,33 (30):7497-7507. DOI:10.1016/j.biomaterials.2012.06.099 . | 
																													
																						| [32] | BOADA-ROMERO E,MARTINEZ J ,HECKMANN B L ,et al. The clearance of dead cells by efferocytosis[J]. Nat Rev Mol Cell Biol ,2020 ,21 (7):398-414. DOI:10.1038/s41580-020-0232-1 . | 
																													
																						| [33] | DORAN A C,YURDAGUL A Jr ,TABAS I . Efferocytosis in health and disease[J]. Nat Rev Immunol ,2020 ,20 (4):254-267. DOI:10.1038/s41577-019-0240-6 . | 
																													
																						| [34] | MORIOKA S,MAUERÖDER C ,RAVICHANDRAN K S . Living on the edge:efferocytosis at the interface of homeostasis and pathology[J]. Immunity ,2019 ,50 (5):1149-1162. DOI:10.1016/j.immuni.2019.04.018 . | 
																													
																						| [35] | SCHLOESSER D,LINDENTHAL L ,SAUER J ,et al. Senescent cells suppress macrophage-mediated corpse removal via upregulation of the CD47-QPCT/L axis[J]. J Cell Biol ,2023 ,222 (2):e202207097. DOI:10.1083/jcb.202207097 . | 
																													
																						| [36] | ORECCHIONI M,GHOSHEH Y ,PRAMOD A B ,et al. Macrophage polarization:different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J]. Front Immunol ,2019 ,10 :1084. DOI:10.3389/fimmu.2019.01084 . | 
																													
																						| [37] | MONTANARO M,MELONI M ,ANEMONA L ,et al. Macrophage activation and M2 polarization in wound bed of diabetic patients treated by dermal/epidermal substitute nevelia[J]. Int J Low Extrem Wounds ,2022 ,21 (4):377-383. DOI:10.1177/1534734620945559 . | 
																													
																						| [38] | TAMAKI S,KUROSHIMA S ,HAYANO H ,et al. Dynamic polarization shifting from M1 to M2 macrophages in reduced osteonecrosis of the jaw-like lesions by cessation of anti-RANKL antibody in mice[J]. Bone ,2020 ,141 :115560. DOI:10.1016/j.bone.2020.115560 . | 
																													
																						| [39] | KOHNO K,KOYA-MIYATA S ,HARASHIMA A ,et al. Inflammatory M1-like macrophages polarized by NK-4 undergo enhanced phenotypic switching to an anti-inflammatory M2-like phenotype upon co-culture with apoptotic cells[J]. J Inflamm ,2021 ,18 (1):2. DOI:10.1186/s12950-020-00267-z . | 
																													
																						| [40] | DING L,YUAN X Y ,YAN J H ,et al. Nrf2 exerts mixed inflammation and glucose metabolism regulatory effects on murine RAW264.7 macrophages[J]. Int Immunopharmacol ,2019 ,71 :198-204. DOI:10.1016/j.intimp.2019.03.023 . | 
																													
																						| [41] | SPRANGERS S,DE VRIES T J ,EVERTS V . Monocyte heterogeneity:consequences for monocyte-derived immune cells[J]. J Immunol Res ,2016 ,2016 :1475435. DOI:10.1155/2016/1475435 . | 
																													
																						| [42] | GEBRAAD A,KORNILOV R ,KAUR S ,et al. Monocyte-derived extracellular vesicles stimulate cytokinesecretion and gene expression of matrixmetalloproteinases by mesenchymal stem/stromal cells[J]. FEBS J ,2018 ,285 (12):2337-2359. DOI:10.1111/febs.14485 . | 
																													
																						| [43] | ONG S M,HADADI E ,DANG T M ,et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence[J]. Cell Death Dis ,2018 ,9 (3):266. DOI:10.1038/s41419-018-0327-1 . | 
																													
																						| [44] | PENCE B D,YARBRO J R ,EMMONS R S . Growth differentiation factor-15 is associated with age-related monocyte dysfunction[J]. Aging Med ,2021 ,4 (1):47-52. DOI:10.1002/agm2.12128 . | 
																													
																						| [45] | TSUKASAKI M,KOMATSU N ,NAGASHIMA K ,et al. Host defense against oral microbiota by bone-damaging T cells[J]. Nat Commun ,2018 ,9 (1):701. DOI:10.1038/s41467-018-03147-6 . | 
																													
																						| [46] | GARLET G P,CARDOSO C R ,MARIANO F S ,et al. Regulatory T cells attenuate experimental periodontitis progression in mice[J]. J Clin Periodontol ,2010 ,37 (7):591-600. DOI:10.1111/j.1600-051X.2010.01586.x . | 
																													
																						| [47] | KOMATSU N,TAKAYANAGI H . Immune-bone interplay in the structural damage in rheumatoid arthritis[J]. Clin Exp Immunol ,2018 ,194 (1):1-8. DOI:10.1111/cei.13188 . | 
																													
																						| [48] | JANG H M,PARK J Y ,LEE Y J ,et al. TLR2 and the NLRP3 inflammasome mediate IL-1β production in Prevotella nigrescens-infected dendritic cells[J]. Int J Med Sci ,2021 ,18 (2):432-440. DOI:10.7150/ijms.47197 . | 
																													
																						| [49] | ELSAYED R,ELASHIRY M ,LIU Y T ,et al. Porphyromonas gingivalis provokes exosome secretion and paracrine immune senescence in bystander dendritic cells[J]. Front Cell Infect Microbiol ,2021 ,11 :669989. DOI:10.3389/fcimb.2021.669989 . | 
																													
																						| [50] | SÖDERSTRÖM K,STEIN E ,COLMENERO P ,et al. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis[J]. Proc Natl Acad Sci U S A ,2010 ,107 (29):13028-13033. DOI:10.1073/pnas.1000546107 . | 
																													
																						| [51] | ZANG J F,YE J ,ZHANG C ,et al. Senescent hepatocytes enhance natural killer cell activity via the CXCL-10/CXCR3 axis[J]. Exp Ther Med ,2019 ,18 (5):3845-3852. DOI:10.3892/etm.2019.8037 . | 
																													
																						| [52] | RAJAGOPALAN S,LEE E C ,DUPRIE M L ,et al. TNFR-associated factor 6 and TGF-β-activated kinase 1 control signals for a senescence response by an endosomal NK cell receptor[J]. J Immunol ,2014 ,192 (2):714-721. DOI:10.4049/jimmunol.1302384 . | 
																													
																						| [53] | RAJAGOPALAN S,LONG E O . Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling[J]. Proc Natl Acad Sci U S A ,2012 ,109 (50):20596-20601. DOI:10.1073/pnas.1208248109 . | 
																													
																						| [54] | DAR H Y,SINGH A ,SHUKLA P ,et al. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice[J]. Sci Rep ,2018 ,8 (1):2503. DOI:10.1038/s41598-018-20896-y . | 
																													
																						| [55] | DAR H Y,SHUKLA P ,MISHRA P K ,et al. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance[J]. Bone Rep ,2018 ,8 :46-56. DOI:10.1016/j.bonr.2018.02.001 . | 
																													
																						| [56] | SHASHKOVA E V,TRIVEDI J ,CLINE-SMITH A B ,et al. Osteoclast-primed Foxp3+ CD8 T cells induce T-bet,eomesodermin,and IFN-γ to regulate bone resorption[J]. J Immunol ,2016 ,197 (3):726-735. DOI:10.4049/jimmunol.1600253 . | 
																													
																						| [57] | FUKUSHIMA Y,MINATO N ,HATTORI M . The impact of senescence-associated T cells on immunosenescence and age-related disorders[J]. Inflamm Regen ,2018 ,38 :24. DOI:10.1186/s41232-018-0082-9 . | 
																													
																						| [58] | CALLENDER L A,CARROLL E C ,BEAL R W J ,et al. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK[J]. Aging Cell ,2018 ,17 (1):e12675. DOI:10.1111/acel.12675 . | 
																													
																						| [59] | FRASCA D,DIAZ A ,ROMERO M ,et al. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways[J]. Exp Gerontol ,2017 ,87 (Pt A):113-120. DOI:10.1016/j.exger.2016.12.001 . | 
																													
																						| [60] | LI Y,TERAUCHI M ,VIKULINA T ,et al. B cell production of both OPG and RANKL is significantly increased in aged mice[J]. Open Bone J ,2014 ,6 :8-17. DOI:10.2174/1876525401406010008 . | 
																													
																						| [61] | ZHANG Z,YUAN W ,DENG J J ,et al. Granulocyte colony stimulating factor (G-CSF) regulates neutrophils infiltration and periodontal tissue destruction in an experimental periodontitis[J]. Mol Immunol ,2020 ,117 :110-121. DOI:10.1016/j.molimm.2019.11.003 . | 
																													
																						| [62] | BREUIL V,TICCHIONI M ,TESTA J ,et al. Immune changes in post-menopausal osteoporosis:the Immunos study[J]. Osteoporos Int ,2010 ,21 (5):805-814. DOI:10.1007/s00198-009-1018-7 . | 
																													
																						| [63] | BHAUMIK D,SCOTT G K ,SCHOKRPUR S ,et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8[J]. Aging ,2009 ,1 (4):402-411. DOI:10.18632/aging.100042 . | 
																													
																						| [64] | LANG A,GRETHER-BECK S ,SINGH M ,et al. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4[J]. Aging ,2016 ,8 (3):484-505. DOI:10.18632/aging.100905 . | 
																													
																						| [65] | NOH J H,KIM K M ,IDDA M L ,et al. GRSF1 suppresses cell senescence[J]. Aging ,2018 ,10 (8):1856-1866. DOI:10.18632/aging.101516 . | 
																													
																						| [66] | NELSON G,KUCHERYAVENKO O ,WORDSWORTH J ,et al. The senescent bystander effect is caused by ROS-activated NF-κB signalling[J]. Mech Ageing Dev ,2018 ,170 :30-36. DOI:10.1016/j.mad.2017.08.005 . | 
																													
																						| [67] | NACARELLI T,LAU L ,FUKUMOTO T ,et al. NAD+ metabolism governs the proinflammatory senescence-associated secretome[J]. Nat Cell Biol ,2019 ,21 (3):397-407. DOI:10.1038/s41556-019-0287-4 . | 
																													
																						| [68] | KIM S J,MEHTA H H ,WAN J X ,et al. Mitochondrial peptides modulate mitochondrial function during cellular senescence[J]. Aging ,2018 ,10 (6):1239-1256. DOI:10.18632/aging.101463 . | 
																													
																						| [69] | PLAFKER K S,ZYLA K ,BERRY W ,et al. Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence[J]. Redox Biol ,2018 ,17 :411-422. DOI:10.1016/j.redox.2018.05.008 . | 
																													
																						| [70] | VIZIOLI M G,LIU T H ,MILLER K N ,et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence[J]. Genes Dev ,2020 ,34 (5/6):428-445. DOI:10.1101/gad.331272.119 . | 
																													
																						| [71] | JOY J,BARRIO L ,SANTOS-TAPIA C ,et al. Proteostasis failure and mitochondrial dysfunction leads to aneuploidy-induced senescence[J]. Dev Cell ,2021 ,56 (14):2043-2058.e7. DOI:10.1016/j.devcel.2021.06.009 . | 
																													
																						| [72] | YAMASHITA R,FUJII S ,USHIODA R ,et al. Ca2+ imbalance caused by ERdj5 deletion affects mitochondrial fragmentation[J]. Sci Rep ,2021 ,11 (1):20772. DOI:10.1038/s41598-021-99980-9 . | 
																													
																						| [73] | GAN X Q,HUANG S B ,YU Q ,et al. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction[J]. Biochem Biophys Res Commun ,2015 ,468 (4):719-725. DOI:10.1016/j.bbrc.2015.11.022 . | 
																													
																						| [74] | ZHANG L,GAN X Q ,HE Y T ,et al. Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species[J]. PLoS One ,2017 ,12 (4):e0175262. DOI:10.1371/journal.pone.0175262 . | 
																													
																						| [75] | JEONG S,SEONG J H ,KANG J H ,et al. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss[J]. FEBS Lett ,2021 ,595 (1):58-67. DOI:10.1002/1873-3468.13963 . | 
																													
																						| [76] | BADER V,WINKLHOFER K F . PINK1 and Parkin:team players in stress-induced mitophagy[J]. Biol Chem ,2020 ,401 (6/7):891-899. DOI:10.1515/hsz-2020-0135 . | 
																													
																						| [77] | LEE S Y,AN H J ,KIM J M ,et al. PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis[J]. Stem Cell Res Ther ,2021 ,12 (1):589. DOI:10.1186/s13287-021-02656-4 . | 
																													
																						| [78] | WANG X,LI H ,ZHENG A ,et al. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration:preventative effect of hydroxytyrosol acetate[J]. Cell Death Dis ,2014 ,5 (11):e1521. DOI:10.1038/cddis.2014.473 . | 
																													
																						| [79] | CAI W J,CHEN Y ,SHI L X ,et al. AKT-GSK3 β signaling pathway regulates mitochondrial dysfunction-associated OPA1 cleavage contributing to osteoblast apoptosis:preventative effects of hydroxytyrosol[J]. Oxid Med Cell Longev ,2019 ,2019 :4101738. DOI:10.1155/2019/4101738 . | 
																													
																						| [80] | MAO Y X,CAI W J ,SUN X Y ,et al. RAGE-dependent mitochondria pathway:a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products[J]. Cell Death Dis ,2018 ,9 (6):674. DOI:10.1038/s41419-018-0718-3 . | 
																													
																						| [81] | WANG W D,KANG W B ,ZHOU X Q ,et al. Mitochondrial protein OPA mediates osteoporosis induced by radiation through the P38 signaling pathway[J]. Eur Rev Med Pharmacol Sci ,2018 ,22 (23):8091-8097. DOI:10.26355/eurrev_201812_16499 . | 
																													
																						| [82] | MIDHA A,PAN H ,ABARCA C ,et al. Unique human and mouse β-cell senescence-associated secretory phenotype (SASP) reveal conserved signaling pathways and heterogeneous factors[J]. Diabetes ,2021 ,70 (5):1098-1116. DOI:10.2337/db20-0553 . | 
																													
																						| [83] | BRAWERMAN G,NTRANOS V ,THOMPSON P J . Alpha cell dysfunction in type 1 diabetes is independent of a senescence program[J]. Front Endocrinol ,2022 ,13 :932516. DOI:10.3389/fendo.2022.932516 . | 
																													
																						| [84] | BAHOUR N,BLEICHMAR L ,ABARCA C ,et al. Clearance of p16Ink4a-positive cells in a mouse transgenic model does not change β-cell mass and has limited effects on their proliferative capacity[J]. Aging ,2023 ,15 (2):441-458. DOI:10.18632/aging.204483 . | 
																													
																						| [85] | PRATTICHIZZO F,DE NIGRIS V ,MANCUSO E ,et al. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages[J]. Redox Biol ,2018 ,15 :170-181. DOI:10.1016/j.redox.2017.12.001 . | 
																													
																						| [86] | WANG Q,NIE L ,ZHAO P F ,et al. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging[J]. Int J Oral Sci ,2021 ,13 (1):11. DOI:10.1038/s41368-021-00116-6 . | 
																													
																						| [87] | ZHANG P,WANG Q ,NIE L ,et al. Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation[J]. J Biol Chem ,2019 ,294 (49):18807-18819. DOI:10.1074/jbc.RA119.010648 . | 
																													
																						| [88] | FRASCA D,ROMERO M ,DIAZ A ,et al. B cells with a senescent-associated secretory phenotype accumulate in the adipose tissue of individuals with obesity[J]. Int J Mol Sci ,2021 ,22 (4):1839. DOI:10.3390/ijms22041839 . | 
																													
																						| [89] | RABHI N,DESEVIN K ,BELKINA A C ,et al. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors[J]. Life Sci Alliance ,2022 ,5 (5):e202101286. DOI:10.26508/lsa.202101286 . | 
																													
																						| [90] | BOULET N,BRIOT A ,JARGAUD V ,et al. Notch activation shifts the fate decision of senescent progenitors toward myofibrogenesis in human adipose tissue[J]. Aging Cell ,2023 ,22 (3):e13776. DOI:10.1111/acel.13776 . | 
																													
																						| [91] | XU M,TCHKONIA T ,DING H S ,et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age[J]. Proc Natl Acad Sci U S A ,2015 ,112 (46):E6301-E6310. DOI:10.1073/pnas.1515386112 . | 
																													
																						| [92] | MANDL M,WAGNER S A ,HATZMANN F M ,et al. Sprouty1 prevents cellular senescence maintaining proliferation and differentiation capacity of human adipose stem/progenitor cells[J]. J Gerontol A Biol Sci Med Sci ,2020 ,75 (12):2308-2319. DOI:10.1093/gerona/glaa098 . | 
																													
																						| [93] | CONLEY S M,HICKSON L J ,KELLOGG T A ,et al. Human obesity induces dysfunction and early senescence in adipose tissue-derived mesenchymal stromal/stem cells[J]. Front Cell Dev Biol ,2020 ,8 :197. DOI:10.3389/fcell.2020.00197 . | 
																													
																						| [94] | RATUSHNYY A,EZDAKOVA M ,BURAVKOVA L . Secretome of senescent adipose-derived mesenchymal stem cells negatively regulates angiogenesis[J]. Int J Mol Sci ,2020 ,21 (5):1802. DOI:10.3390/ijms21051802 . | 
																													
																						| [95] | LI Y J,LU L Y ,XIE Y ,et al. Interleukin-6 knockout inhibits senescence of bone mesenchymal stem cells in high-fat diet-induced bone loss[J]. Front Endocrinol ,2020 ,11 :622950. DOI:10.3389/fendo.2020.622950 . | 
																													
																						| [96] | VALVERDE M,SÁNCHEZ-BRITO A . Sustained activation of TNFα-induced DNA damage response in newly differentiated adipocytes[J]. Int J Mol Sci ,2021 ,22 (19):10548. DOI:10.3390/ijms221910548 . | 
																													
																						| [97] | VELDHUIS-VLUG A G,ROSEN C J . Clinical implications of bone marrow adiposity[J]. J Intern Med ,2018 ,283 (2):121-139. DOI:10.1111/joim.12718 . | 
																													
																						| [98] | TENCEROVA M,FIGEAC F ,DITZEL N ,et al. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice[J]. J Bone Miner Res ,2018 ,33 (6):1154-1165. DOI:10.1002/jbmr.3408 . | 
																													
																						| [99] | LIU X N,GU Y R ,KUMAR S ,et al. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow[J]. Cell Metab ,2023 ,35 (4):667-684.e6. DOI:10.1016/j.cmet.2023.03.005 . |