[1] |
|
[2] |
|
[3] |
BILEZIKIAN J P, KHAN A A, SILVERBERG S J, et al. Evaluation and management of primary hyperparathyroidism:summary statement and guidelines from the fifth international workshop[J]. J Bone Miner Res, 2022, 37(11):2293-2314. DOI: 10.1002/jbmr.4677.
|
[4] |
|
[5] |
SUN Q Y, SUN W W, YE H Y, et al. The efficacy of bisphosphonates for osteoporosis in young Cushing's disease patients with biochemical remission:a retrospective cohort study[J]. Front Endocrinol, 2024, 15:1412046. DOI: 10.3389/fendo.2024.1412046.
|
[6] |
POLI A, BRUSCHI F, CESANA B, et al. Plasma low-density lipoprotein cholesterol and bone mass densitometry in postmenopausal women[J]. Obstet Gynecol, 2003, 102(5 Pt 1):922-926. DOI: 10.1016/j.obstetgynecol.2003.07.004.
|
[7] |
|
[8] |
ANAGNOSTIS P, FLORENTIN M, LIVADAS S, et al. Bone health in patients with dyslipidemias:an underestimated aspect[J]. Int J Mol Sci, 2022, 23(3):1639. DOI: 10.3390/ijms23031639.
|
[9] |
LI G H, CHEUNG C L, AU P C, et al. Positive effects of low LDL-C and statins on bone mineral density:an integrated epidemiological observation analysis and Mendelian randomization study[J]. Int J Epidemiol, 2020, 49(4):1221-1235. DOI: 10.1093/ije/dyz145.
|
[10] |
LIN X, PENG C, GREENBAUM J, et al. Identifying potentially common genes between dyslipidemia and osteoporosis using novel analytical approaches[J]. Mol Genet Genomics, 2018, 293(3):711-723. DOI: 10.1007/s00438-017-1414-1.
|
[11] |
DENNISON E M, SYDDALL H E, AIHIE SAYER A, et al. Lipid profile,obesity and bone mineral density:the Hertfordshire Cohort Study[J]. QJM, 2007, 100(5):297-303. DOI: 10.1093/qjmed/hcm023.
|
[12] |
XIE R J, HUANG X J, LIU Q L, et al. Positive association between high-density lipoprotein cholesterol and bone mineral density in U.S. adults:the NHANES 2011-2018[J]. J Orthop Surg Res, 2022, 17(1):92. DOI: 10.1186/s13018-022-02986-w.
|
[13] |
SUN Y B, QI X, WANG X, et al. Association between high-density lipoprotein cholesterol and lumbar bone mineral density in Chinese:a large cross-sectional study[J]. Lipids Health Dis, 2024, 23(1):27. DOI: 10.1186/s12944-024-02023-1.
|
[14] |
YIN W Z, LI Z R, ZHANG W Z. Modulation of bone and marrow niche by cholesterol[J]. Nutrients, 2019, 11(6):1394. DOI: 10.3390/nu11061394.
|
[15] |
|
[16] |
WANG J Z, LI S S, PU H Y, et al. The association between the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and the risk of osteoporosis among U.S. adults:analysis of NHANES data[J]. Lipids Health Dis, 2024, 23(1):161. DOI: 10.1186/s12944-024-02152-7.
|
[17] |
ZHENG M, WAN Y N, LIU G W, et al. Differences in the prevalence and risk factors of osteoporosis in Chinese urban and rural regions:a cross-sectional study[J]. BMC Musculoskelet Disord, 2023, 24(1):46. DOI: 10.1186/s12891-023-06147-w.
|
[18] |
SONG Y F, LIU J J, ZHAO K, et al. Cholesterol-induced toxicity:an integrated view of the role of cholesterol in multiple diseases[J]. Cell Metab, 2021, 33(10):1911-1925. DOI: 10.1016/j.cmet.2021.09.001.
|
[19] |
PELTON K, KRIEDER J, JOINER D, et al. Hypercholesterolemia promotes an osteoporotic phenotype[J]. Am J Pathol, 2012, 181(3):928-936. DOI: 10.1016/j.ajpath.2012.05.034.
|
[20] |
ZHOU Y M, DENG T, ZHANG H Q, et al. Hypercholesterolaemia increases the risk of high-turnover osteoporosis in men[J]. Mol Med Rep, 2019, 19(6):4603-4612. DOI: 10.3892/mmr.2019.10131.
|
[21] |
XIE R J, HUANG X J, ZHANG Y, et al. High low-density lipoprotein cholesterol levels are associated with osteoporosis among adults 20-59 years of age[J]. Int J Gen Med, 2022, 15:2261-2270. DOI: 10.2147/IJGM.S353531.
|
[22] |
HONG W, WEI Z Y, QIU Z H, et al. Atorvastatin promotes bone formation in aged apoE-/- mice through the Sirt1-Runx2 axis[J]. J Orthop Surg Res, 2020, 15(1):303. DOI: 10.1186/s13018-020-01841-0.
|
[23] |
XIONG Z C, YI P, TANG X S, et al. Meta-analysis of the efficacy and safety of alendronate combined with atorvastatin in the treatment of osteoporosis in diabetes mellitus[J]. Biomed Res Int, 2022, 2022:6747469. DOI: 10.1155/2022/6747469.
|
[24] |
ZHU J X, ZHANG C G, JIA J L, et al. Osteogenic effects in a rat osteoporosis model and femur defect model by simvastatin microcrystals[J]. Ann N Y Acad Sci, 2021, 1487(1):31-42. DOI: 10.1111/nyas.14513.
|
[25] |
PAPAGEORGIOU M, MERMINOD F, FERRARI S, et al. Associations of calcium intake and calcium from various sources with blood lipids in a population of older women and men with high calcium intake[J]. Nutrients, 2022, 14(6):1314. DOI: 10.3390/nu14061314.
|
[26] |
AL REFAIE A, BALDASSINI L, MONDILLO C, et al. Vitamin D and dyslipidemia:is there really a link? A narrative review[J]. Nutrients, 2024, 16(8):1144. DOI: 10.3390/nu16081144.
|
[27] |
MOHAMED R H, TAREK M, HAMAM G G, et al. Zoledronic acid prevents the hepatic changes associated with high fat diet in rats;the potential role of mevalonic acid pathway in nonalcoholic steatohepatitis[J]. Eur J Pharmacol, 2019, 858:172469. DOI: 10.1016/j.ejphar.2019.172469.
|
[28] |
ALOMAR S A, GĂMAN M A, PRABAHAR K, et al. The effect of tamoxifen on the lipid profile in women:a systematic review and meta-analysis of randomized controlled trials[J]. Exp Gerontol, 2022, 159:111680. DOI: 10.1016/j.exger.2021.111680.
|
[29] |
DELITALA A P, SCUTERI A, DORIA C. Thyroid hormone diseases and osteoporosis[J]. J Clin Med, 2020, 9(4):1034. DOI: 10.3390/jcm9041034.
|
[30] |
|
[31] |
KIM S M, RYU V, MIYASHITA S, et al. Thyrotropin,hyperthyroidism,and bone mass[J]. J Clin Endocrinol Metab, 2021, 106(12):e4809-4821. DOI: 10.1210/clinem/dgab548.
|
[32] |
APOSTU D, LUCACIU O, OLTEAN-DAN D, et al. The influence of thyroid pathology on osteoporosis and fracture risk:a review[J]. Diagnostics, 2020, 10(3):149. DOI: 10.3390/diagnostics10030149.
|
[33] |
BRANSTETTER R M 4th, ISLAM R K, TOUPS C A, et al. Mechanisms and treatment options for hyperthyroid-induced osteoporosis:a narrative review[J]. Cureus, 2023, 15(11):e48798. DOI: 10.7759/cureus.48798.
|
[34] |
WÖLFEL E M, LADEMANN F, HEMMATIAN H, et al. Reduced bone mass and increased osteocyte tartrate-resistant acid phosphatase(TRAP)activity,but not low mineralized matrix around osteocyte lacunae,are restored after recovery from exogenous hyperthyroidism in male mice[J]. J Bone Miner Res, 2023, 38(1):131-143. DOI: 10.1002/jbmr.4736.
|
[35] |
王苹. 骨转换标志物对Graves病患者骨量异常的识别作用[J]. 中国地方病防治,2022,37(4):335-337.
|
[36] |
LIN S Y, LIN C L, CHEN H T, et al. Risk of osteoporosis in thyroid cancer patients using levothyroxine:a population-based study[J]. Curr Med Res Opin, 2018, 34(5):805-812. DOI: 10.1080/03007995.2017.1378174.
|
[37] |
|
[38] |
MIRZA F, CANALIS E. Management of endocrine disease:secondary osteoporosis:pathophysiology and management[J]. Eur J Endocrinol, 2015, 173(3):R131-151. DOI: 10.1530/EJE-15-0118.
|
[39] |
PARK S Y, KIM J, CHUNG H Y. Denosumab-induced hypocalcemia in a patient with hyperthyroidism:a case report[J]. Osteoporos Int, 2022, 33(1):305-308. DOI: 10.1007/s00198-021-06059-2.
|
[40] |
QI W H, WANG D, HONG Y H, et al. Investigating the causal relationship between thyroid dysfunction diseases and osteoporosis:a two-sample Mendelian randomization analysis[J]. Sci Rep, 2024, 14(1):12784. DOI: 10.1038/s41598-024-62854-x.
|
[41] |
STEPHANUS A D, RAMOS S C L, SEGUTI V F, et al. Subclinical hypothyroidism is not associated with femoral osteoporosis in individuals aged 50 years or older[J]. J Clin Densitom, 2023, 26(2):101362. DOI: 10.1016/j.jocd.2023.03.001.
|
[42] |
LEE K, LIM S, PARK H, et al. Subclinical thyroid dysfunction,bone mineral density,and osteoporosis in a middle-aged Korean population[J]. Osteoporos Int, 2020, 31(3):547-555. DOI: 10.1007/s00198-019-05205-1.
|
[43] |
VESTERGAARD P, MOSEKILDE L. Fractures in patients with hyperthyroidism and hypothyroidism:a nationwide follow-up study in 16,249 patients[J]. Thyroid, 2002, 12(5):411-419. DOI: 10.1089/105072502760043503.
|
[44] |
HUGHES K, EASTMAN C. Thyroid disease:Long-term management of hyperthyroidism and hypothyroidism[J]. Aust J Gen Pract, 2021, 50(1/2):36-42. DOI: 10.31128/AJGP-09-20-5653.
|
[45] |
VINTHER C J, POULSEN L H, NICOLAISEN P, et al. Do bone turnover markers reflect changes in bone microarchitecture during treatment of patients with thyroid dysfunction?[J]. J Endocrinol Invest, 2023, 46(2):345-358. DOI: 10.1007/s40618-022-01907-2.
|
[46] |
SZULC P. Biochemical bone turnover markers in hormonal disorders in adults:a narrative review[J]. J Endocrinol Invest, 2020, 43(10):1409-1427. DOI: 10.1007/s40618-020-01269-7.
|
[47] |
ALOTAIBE H F, ALOLAIWI L A, ALMUTAIRI A, et al. Association between levothyroxine replacement therapy and osteoporosis in Riyadh,Saudi Arabia:a matched case-control study[J]. Pharmazie, 2022, 77(10):295-298. DOI: 10.1691/ph.2022.2436.
|
[48] |
EFFRAIMIDIS G, WATT T, FELDT-RASMUSSEN U. Levothyroxine therapy in elderly patients with hypothyroidism[J]. Front Endocrinol, 2021, 12:641560. DOI: 10.3389/fendo.2021.641560.
|
[49] |
PAOLETTA M, MORETTI A, LIGUORI S, et al. Transient osteoporosis of the hip and subclinical hypothyroidism:an unusual dangerous duet? Case report and pathogenetic hypothesis[J]. BMC Musculoskelet Disord, 2020, 21(1):543. DOI: 10.1186/s12891-020-03574-x.
|
[50] |
MARINA D, RASMUSSEN Å K, BUCH-LARSEN K, et al. Influence of the anti-oestrogens tamoxifen and letrozole on thyroid function in women with early and advanced breast cancer:a systematic review[J]. Cancer Med, 2023, 12(2):967-982. DOI: 10.1002/cam4.4949.
|
[51] |
PETRAMALA L, ZINNAMOSCA L, SETTEVENDEMMIE A, et al. Bone and mineral metabolism in patients with primary aldosteronism[J]. Int J Endocrinol, 2014, 2014:836529. DOI: 10.1155/2014/836529.
|
[52] |
SHI S M, LU C Y, TIAN H M, et al. Primary aldosteronism and bone metabolism:a systematic review and meta-analysis[J]. Front Endocrinol, 2020, 11:574151. DOI: 10.3389/fendo.2020.574151.
|
[53] |
TRANDAFIR A I, GHEORGHE A M, SIMA O C, et al. Cross-disciplinary approach of adrenal tumors:insights into primary aldosteronism-related mineral metabolism status and osteoporotic fracture risk[J]. Int J Mol Sci, 2023, 24(24):17338. DOI: 10.3390/ijms242417338.
|
[54] |
WANG A N, WANG Y H, LIU H Z, et al. Bone and mineral metabolism in patients with primary aldosteronism:a systematic review and meta-analysis[J]. Front Endocrinol, 2022, 13:1027841. DOI: 10.3389/fendo.2022.1027841.
|
[55] |
SONG S W, CAI X T, HU J L, et al. Effectiveness of spironolactone in reducing osteoporosis and future fracture risk in middle-aged and elderly hypertensive patients[J]. Des Dev Ther, 2024, 18:2215-2225. DOI: 10.2147/DDDT.S466904.
|
[56] |
KIM B J, KWAK M K, AHN S H, et al. Lower trabecular bone score in patients with primary aldosteronism:human skeletal deterioration by aldosterone excess[J]. J Clin Endocrinol Metab, 2018, 103(2):615-621. DOI: 10.1210/jc.2017-02043.
|
[57] |
张琪. 盐皮质激素受体过度活化在糖皮质激素诱导的骨质疏松中的作用研究[D]. 成都:四川大学,2021.
|
[58] |
中华医学会骨质疏松和骨矿盐疾病分会. 男性骨质疏松症诊疗指南[J]. 中华骨质疏松和骨矿盐疾病杂志,2020,13(5):381-395.
|
[59] |
SHIGEHARA K, IZUMI K, KADONO Y, et al. Testosterone and bone health in men:a narrative review[J]. J Clin Med, 2021, 10(3):530. DOI: 10.3390/jcm10030530.
|
[60] |
GRANDE G, GRAZIANI A, DI MAMBRO A, et al. Osteoporosis and bone metabolism in patients with Klinefelter syndrome[J]. Endocr Connect, 2023, 12(8):e230058. DOI: 10.1530/EC-23-0058.
|
[61] |
KETCHEM J M, BOWMAN E J, ISALES C M. Male sex hormones,aging,and inflammation[J]. Biogerontology, 2023, 24(1):1-25. DOI: 10.1007/s10522-022-10002-1.
|
[62] |
BANDEIRA L, SILVA B C, BILEZIKIAN J P. Male osteoporosis[J]. Arch Endocrinol Metab, 2022, 66(5):739-747. DOI: 10.20945/2359-3997000000563.
|
[63] |
COLLELUORI G, AGUIRRE L, NAPOLI N, et al. Testosterone therapy effects on bone mass and turnover in hypogonadal men with type 2 diabetes[J]. J Clin Endocrinol Metab, 2021, 106(8):e3058-e3068. DOI: 10.1210/clinem/dgab181.
|
[64] |
GRIGORYAN S, CLINES G A. Hormonal control of bone architecture throughout the lifespan:implications for fracture prediction and prevention[J]. Endocr Pract, 2024, 30(7):687-694. DOI: 10.1016/j.eprac.2024.04.006.
|
[65] |
SZULC P. Role of sex steroids hormones in the regulation of bone metabolism in men:Evidence from clinical studies[J]. Best Pract Res Clin Endocrinol Metab, 2022, 36(2):101624. DOI: 10.1016/j.beem.2022.101624.
|
[66] |
SAKR H F, AMMAR B, ALKHARUSI A, et al. Resveratrol modulates bone mineral density and bone mineral content in A rat model of male hypogonadism[J]. Chin J Integr Med, 2023, 29(2):146-154. DOI: 10.1007/s11655-022-2895-2.
|
[67] |
|
[68] |
LEE M J, RYU H K, AN S Y, et al. Testosterone replacement and bone mineral density in male pituitary tumor patients[J]. Endocrinol Metab, 2014, 29(1):48-53. DOI: 10.3803/EnM.2014.29.1.48.
|
[69] |
CORONA G, VENA W, PIZZOCARO A, et al. Testosterone supplementation and bone parameters:a systematic review and meta-analysis study[J]. J Endocrinol Invest, 2022, 45(5):911-926. DOI: 10.1007/s40618-021-01702-5.
|
[70] |
ROZENBERG S, BRUYÈRE O, BERGMANN P, et al. How to manage osteoporosis before the age of 50[J]. Maturitas, 2020, 138:14-25. DOI: 10.1016/j.maturitas.2020.05.004.
|
[71] |
YOKOMOTO-UMAKOSHI M, UMAKOSHI H, TSUIKI M, et al. Paraganglioma as a risk factor for bone metastasis[J]. Endocr J, 2018, 65(3):253-260. DOI: 10.1507/endocrj.EJ17-0368.
|
[72] |
FADIGA L, SARAIVA J, PAIVA I, et al. Thoracic spine metastasis presenting 18 years after complete resection of a phaeochromocytoma[J]. BMJ Case Rep, 2019, 12(8):e229621. DOI: 10.1136/bcr-2019-229621.
|
[73] |
KHATIWADA S, AGARWAL S, KANDASAMY D, et al. Prevalence and predictors of osteoporosis/BMD below expected range for age in pheochromocytoma/paraganglioma and BMD,TBS change post-operatively:a prospective cohort study[J]. Indian J Endocrinol Metab, 2023, 27(1):87-90. DOI: 10.4103/ijem.ijem_322_22.
|
[74] |
KIM B J, LEE S H, KOH J M. Bone health in adrenal disorders[J]. Endocrinol Metab, 2018, 33(1):1-8. DOI: 10.3803/EnM.2018.33.1.1.
|
[75] |
KIM B J, KWAK M K, KIM J S, et al. Higher sympathetic activity as a risk factor for skeletal deterioration in pheochromocytoma[J]. Bone, 2018, 116:1-7. DOI: 10.1016/j.bone.2018.06.023.
|
[76] |
YOKOMOTO-UMAKOSHI M, UMAKOSHI H, FUKUMOTO T, et al. Pheochromocytoma and paraganglioma:an emerging cause of secondary osteoporosis[J]. Bone, 2020, 133:115221. DOI: 10.1016/j.bone.2020.115221.
|
[77] |
DUTTA D, NAGENDRA L, CHANDRAN M, et al. Impact of pheochromocytoma or paraganglioma on bone metabolism:a systemic review and meta-analysis[J]. J Clin Densitom, 2024, 27(3):101501. DOI: 10.1016/j.jocd.2024.101501.
|
[78] |
VAN LOON K, ZHANG L, KEISER J, et al. Bone metastases and skeletal-related events from neuroendocrine tumors[J]. Endocr Connect, 2015, 4(1):9-17. DOI: 10.1530/EC-14-0119.
|
[79] |
TISCHLER A S, POWERS J F, PIGNATELLO M, et al. Vitamin D 3-induced proliferative lesions in the rat adrenal medulla[J]. Toxicol Sci, 1999, 51(1):9-18. DOI: 10.1093/toxsci/51.1.9.
|
[80] |
TIRABASSI G, SALVIO G, ALTIERI B, et al. Adrenal disorders:is there any role for vitamin D?[J]. Rev Endocr Metab Disord, 2017, 18(3):355-362. DOI: 10.1007/s11154-016-9391-y.
|
[81] |
MALTONI C, MINARDI F, PINTO C, et al. Results of three life-span experimental carcinogenicity and anticarcinogenicity studies on tamoxifen in rats[J]. Ann N Y Acad Sci, 1997, 837:469-512. DOI: 10.1111/j.1749-6632.1997.tb56895.x.
|
[82] |
BOLANOWSKI M, HALUPCZOK J, JAWIARCZYK-PRZYBYŁOWSKA A. Pituitary disorders and osteoporosis[J]. Int J Endocrinol, 2015, 2015:206853. DOI: 10.1155/2015/206853.
|
[83] |
SCHLECHTE J, WALKNER L, KATHOL M. A longitudinal analysis of premenopausal bone loss in healthy women and women with hyperprolactinemia[J]. J Clin Endocrinol Metab, 1992, 75(3):698-703. DOI: 10.1210/jcem.75.3.1517357.
|
[84] |
YUN S J, SANG H, PARK S Y, et al. Effect of hyperprolactinemia on bone metabolism:focusing on osteopenia/osteoporosis[J]. Int J Mol Sci, 2024, 25(3):1474. DOI: 10.3390/ijms25031474.
|
[85] |
UYGUR M M, FRARA S, DI FILIPPO L, et al. New tools for bone health assessment in secreting pituitary adenomas[J]. Trends Endocrinol Metab, 2023, 34(4):231-242. DOI: 10.1016/j.tem.2023.01.006.
|
[86] |
MAZZIOTTI G, CHIAVISTELLI S, GIUSTINA A. Pituitary diseases and bone[J]. Endocrinol Metab Clin North Am, 2015, 44(1):171-180. DOI: 10.1016/j.ecl.2014.10.014.
|
[87] |
BARNABAS R, GAUDA B S, CHERIAN K E, et al. An uncommon cause of osteoporosis[J]. J Family Med Prim Care, 2018, 7(2):455-457. DOI: 10.4103/jfmpc.jfmpc_350_17.
|
[88] |
SAMPERI I, LITHGOW K, KARAVITAKI N. Hyperprolactinaemia[J]. J Clin Med, 2019, 8(12):E2203. DOI: 10.3390/jcm8122203.
|
[89] |
BIOLETTO F, BERTON A M, BARALE M, et al. Skeletal fragility in pituitary disease:how can we predict fracture risk?[J]. Pituitary, 2024, 27(6):789-801. DOI: 10.1007/s11102-024-01447-3.
|
[90] |
WANG L, CHEN K, DUAN L, et al. Bone microarchitecture impairment in prolactinoma patients assessed by HR-pQCT[J]. Osteoporos Int, 2022, 33(7):1535-1544. DOI: 10.1007/s00198-021-06289-4.
|
[91] |
ANDEREGGEN L, FREY J, ANDRES R H, et al. Persistent bone impairment despite long-term control of hyperprolactinemia and hypogonadism in men and women with prolactinomas[J]. Sci Rep, 2021, 11(1):5122. DOI: 10.1038/s41598-021-84606-x.
|
[92] |
DANDINOĞLU T, AKARSU S, TEKIN L, et al. A 22-year-old man with severe osteoporosis due to prolactinoma[J]. J Clin Rheumatol, 2013, 19(6):341-343. DOI: 10.1097/RHU.0b013e31829ce57c.
|
[93] |
ROLLA M, JAWIARCZYK-PRZYBYŁOWSKA A, HALUPCZOK-ŻYŁA J, et al. Complications and comorbidities of acromegaly-retrospective study in Polish center[J]. Front Endocrinol, 2021, 12:642131. DOI: 10.3389/fendo.2021.642131.
|
[94] |
GIUSTINA A, BARKAN A, BECKERS A, et al. A consensus on the diagnosis and treatment of acromegaly comorbidities:an update[J]. J Clin Endocrinol Metab, 2020, 105(4):dgz096. DOI: 10.1210/clinem/dgz096.
|
[95] |
WYDRA A, STELMACHOWSKA-BANAŚ M, CZAJKA-ORANIEC I. Skeletal complications in acromegaly[J]. Reumatologia, 2023, 61(4):248-255. DOI: 10.5114/reum/169918.
|
[96] |
SHI S M, ZHANG L, YU Y R, et al. Acromegaly and non-parathyroid hormone-dependent hypercalcemia:a case report and literature review[J]. BMC Endocr Disord, 2021, 21(1):90. DOI: 10.1186/s12902-021-00756-z.
|
[97] |
JAWIARCZYK-PRZYBYŁOWSKA A, HALUPCZOK-ŻYŁA J, SYRYCKA J, et al. Trabecular bone score and osteoprotegerin as useful tools in the assessment of bone deterioration in acromegaly[J]. Front Endocrinol, 2022, 13:862845. DOI: 10.3389/fendo.2022.862845.
|
[98] |
ROSENDAL C, ARLIEN-SØBORG M C, NIELSEN E H, et al. Changes in acromegaly comorbidities,treatment,and outcome over three decades:a nationwide cohort study[J]. Front Endocrinol, 2024, 15:1380436. DOI: 10.3389/fendo.2024.1380436.
|
[99] |
MAZZIOTTI G, BATTISTA C, MAFFEZZONI F, et al. Treatment of acromegalic osteopathy in real-life clinical practice:the BAAC(bone active drugs in acromegaly)study[J]. J Clin Endocrinol Metab, 2020, 105(9):e3285-3292. DOI: 10.1210/clinem/dgaa363.
|