[25] |
BELLOMO G, SANTAMBROGIO L, FIACCONI M, et al. Plasma profiles of adrenocorticotropic hormone,cortisol,growth hormone and prolactin in patients with untreated Parkinson's disease[J]. J Neurol, 1991, 238(1):19-22. DOI: 10.1007/BF00319704.
|
[26] |
HASUIKE Y, ENDO T, KOROYASU M, et al. Bile acid abnormality induced by intestinal dysbiosis might explain lipid metabolism in Parkinson's disease[J]. Med Hypotheses, 2020, 134:109436. DOI: 10.1016/j.mehy.2019.109436.
|
[27] |
胡洁云,邬思繁,楼晓霞,等. PINP、β-CTx与帕金森病患者骨质疏松的关系研究[C]//2018年浙江省医学会骨质疏松与骨矿盐疾病分会学术年会暨骨质疏松症和骨质疏松性骨折诊治进展专题研讨会. 嘉兴:[出版者不详],2018.
|
[28] |
OZTURK E A, GUNDOGDU I, TONUK B, et al. Bone mineral density and serum vitamin D status in Parkinson's disease:are the stage and clinical features of the disease important?[J]. Neurol India, 2020, 68(2):394-400. DOI: 10.4103/0028-3886.283755.
|
[29] |
ALI S J, ELLUR G, KHAN M T, et al. Bone loss in MPTP mouse model of Parkinson's disease is triggered by decreased osteoblastogenesis and increased osteoclastogenesis[J]. Toxicol Appl Pharmacol, 2019, 363:154-163. DOI: 10.1016/j.taap.2018.12.003.
|
[30] |
BOELENS KEUN J T, ARNOLDUSSEN I A, VRIEND C, et al. Dietary approaches to improve efficacy and control side effects of levodopa therapy in Parkinson's disease:a systematic review[J]. Adv Nutr, 2021, 12(6):2265-2287. DOI: 10.1093/advances/nmab060.
|
[31] |
|
[32] |
TANNER C M, CUMMINGS S R, SCHWARZSCHILD M A, et al. The TOPAZ study:a home-based trial of zoledronic acid to prevent fractures in neurodegenerative Parkinsonism[J]. NPJ Parkinsons Dis, 2021, 7(1):16. DOI: 10.1038/s41531-021-00162-1.
|
[33] |
AZADVARI M, MIRMOSAYYEB O, HOSSEINI M, et al. The prevalence of osteoporosis/osteopenia in patients with multiple sclerosis(MS):a systematic review and meta-analysis[J]. Neurol Sci, 2022, 43(6):3879-3892. DOI: 10.1007/s10072-022-05871-w.
|
[34] |
ROSS B J, ROSS A J, LEE O C, et al. Osteoporosis management and secondary fragility fracture rates in patients with multiple sclerosis:a matched cohort study[J]. Osteoporos Int, 2022, 33(9):1999-2010. DOI: 10.1007/s00198-022-06451-6.
|
[1] |
HUDEC S M, CAMACHO P M. Secondary causes of osteoporosis[J]. Endocr Pract, 2013, 19(1):120-128. DOI: 10.4158/EP12059.RA.
|
[2] |
MAHITTHIHARN K, KOVINDHA A, KAEWCHUR T, et al. Prevalence and influencing factors of spinal cord injury-related osteoporosis and fragility fractures in Thai people with chronic spinal cord injury:a cross-sectional,observational study[J]. J Spinal Cord Med, 2023, 46(3):458-465. DOI: 10.1080/10790268.2022.2054763.
|
[3] |
|
[4] |
KAPRAL M K, FANG J M, ALIBHAI S M, et al. Risk of fractures after stroke:results from the Ontario stroke registry[J]. Neurology, 2017, 88(1):57-64. DOI: 10.1212/WNL.0000000000003457.
|
[5] |
LIU R Q, CHAO A J, WANG K, et al. Incidence and risk factors of medical complications and direct medical costs after osteoporotic fracture among patients in China[J]. Arch Osteoporos, 2018, 13(1):12. DOI: 10.1007/s11657-018-0429-5.
|
[6] |
ROLVIEN T, AMLING M. Disuse osteoporosis:clinical and mechanistic insights[J]. Calcif Tissue Int, 2022, 110(5):592-604. DOI: 10.1007/s00223-021-00836-1.
|
[7] |
|
[8] |
UTOR T W, KURA J, MATTINGLY A J, et al. The effects of exercise and activity-based physical therapy on bone after spinal cord injury[J]. Int J Mol Sci, 2022, 23(2). DOI: 10.3390/ijms23020608.
|
[9] |
ABDELRAHMAN S, IRELAND A, WINTER E M, et al. Osteoporosis after spinal cord injury:aetiology,effects and therapeutic approaches[J]. J Musculoskelet Neuronal Interact,2021,21(1):26-50.
|
[10] |
|
[11] |
QIAO X C, ZHANG K, LI X Y, et al. Gut microbiota and fecal metabolic signatures in rat models of disuse-induced osteoporosis[J]. Front Cell Infect Microbiol, 2022, 12:1018897. DOI: 10.3389/fcimb.2022.1018897.
|
[35] |
VOGLER M, OLEKSY A, SCHULZE S, et al. An antagonistic monoclonal anti-Plexin-B1 antibody exerts therapeutic effects in mouse models of postmenopausal osteoporosis and multiple sclerosis[J]. J Biol Chem, 2022, 298(9):102265. DOI: 10.1016/j.jbc.2022.102265.
|
[36] |
SOBH M M, ABDALBARY M, ELNAGAR S, et al. Secondary osteoporosis and metabolic bone diseases[J]. J Clin Med, 2022, 11(9):2382. DOI: 10.3390/jcm11092382.
|
[37] |
KAMPMAN M T, ERIKSEN E F, HOLMØY T. Multiple sclerosis,a cause of secondary osteoporosis? What is the evidence and what are the clinical implications?[J]. Acta Neurol Scand Suppl, 2011(191):44-49. DOI: 10.1111/j.1600-0404.2011.01543.x.
|
[38] |
GHAREGHANI M, SCAVO L, ARNOULT D, et al. Melatonin therapy reduces the risk of osteoporosis and normalizes bone formation in multiple sclerosis[J]. Fundam Clin Pharmacol, 2018, 32(2):181-187. DOI: 10.1111/fcp.12337.
|
[39] |
BISSON E J, FINLAYSON M L, EKUMA O, et al. Multiple sclerosis is associated with low bone mineral density and osteoporosis[J]. Neurol Clin Pract, 2019, 9(5):391-399. DOI: 10.1212/CPJ.0000000000000669.
|
[40] |
OLSSON A, OTURAI A B, SØNDERGAARD H B, et al. Bone microarchitecture and bone mineral density in multiple sclerosis[J]. Acta Neurol Scand, 2018, 137(3):363-369. DOI: 10.1111/ane.12884.
|
[41] |
BISSON E J, FINLAYSON M L, EKUMA O, et al. Accuracy of FRAX® in people with multiple sclerosis[J]. J Bone Miner Res, 2019, 34(6):1095-1100. DOI: 10.1002/jbmr.3682.
|
[42] |
SIMEAKIS G, ANAGNOSTOULI M, FAKAS N, et al. High-dose intravenous steroid treatment seems to have No long-term negative effect on bone mineral density of young and newly diagnosed multiple sclerosis patients:a pilot study[J]. Biomedicines, 2023, 11(2):603. DOI: 10.3390/biomedicines11020603.
|
[43] |
ATKINSON S A, FLEET J C. Canadian recommendations for vitamin D intake for persons affected by multiple sclerosis[J]. J Steroid Biochem Mol Biol, 2020, 199:105606. DOI: 10.1016/j.jsbmb.2020.105606.
|
[12] |
|
[13] |
KESAVAN C, RUNDLE C, MOHAN S. Repeated mild traumatic brain injury impairs fracture healing in male mice[J]. BMC Res Notes, 2022, 15(1):25. DOI: 10.1186/s13104-022-05906-7.
|
[14] |
KESAVAN C, BAJWA N M, WATT H, et al. Growth hormone effects on bone loss-induced by mild traumatic brain injury and/or hind limb unloading[J]. Sci Rep, 2019, 9(1):18995. DOI: 10.1038/s41598-019-55258-9.
|
[15] |
LEE J I, KIM J H, KIM H W, et al. Changes in bone metabolism in a rat model of traumatic brain injury[J]. Brain Inj, 2005, 19(14):1207-1211. DOI: 10.1080/02699050500309338.
|
[16] |
LEE J H, CHO J H, LEE D G. Sclerostin concentration and bone biomarker trends in patients with spinal cord injury:a prospective study[J]. Healthcare, 2022, 10(6):983. DOI: 10.3390/healthcare10060983.
|
[17] |
|
[18] |
SHAMS R, DRASITES K P, ZAMAN V, et al. The pathophysiology of osteoporosis after spinal cord injury[J]. Int J Mol Sci, 2021, 22(6):3057. DOI: 10.3390/ijms22063057.
|
[19] |
WU Y, WANG F, ZHANG Z. The efficacy and safety of bisphosphonate analogs for treatment of osteoporosis after spinal cord injury:a systematic review and meta-analysis of randomized controlled trials[J]. Osteoporos Int, 2021, 32(6):1117-1127. DOI: 10.1007/s00198-020-05807-0.
|
[20] |
EDWARDS W B, SIMONIAN N, HAIDER I T, et al. Effects of teriparatide and vibration on bone mass and bone strength in people with bone loss and spinal cord injury:a randomized,controlled trial[J]. J Bone Miner Res, 2018, 33(10):1729-1740. DOI: 10.1002/jbmr.3525.
|
[21] |
GIFRE L, VIDAL J, CARRASCO J L, et al. Denosumab increases sublesional bone mass in osteoporotic individuals with recent spinal cord injury[J]. Osteoporos Int, 2016, 27(1):405-410. DOI: 10.1007/s00198-015-3333-5.
|
[44] |
DUSCHA A, HEGELMAIER T, DÜRHOLZ K, et al. Propionic acid beneficially modifies osteoporosis biomarkers in patients with multiple sclerosis[J]. Ther Adv Neurol Disord, 2022, 15:17562864221103935. DOI: 10.1177/17562864221103935.
|
[45] |
XIE C X, WANG C L, LUO H. Increased risk of osteoporosis in patients with cognitive impairment:a systematic review and meta-analysis[J]. BMC Geriatr, 2023, 23(1):797. DOI: 10.1186/s12877-023-04548-z.
|
[46] |
ZHAO Y, SHEN L, JI H F. Alzheimer's disease and risk of hip fracture:a meta-analysis study[J]. Sci World J, 2012, 2012:872173. DOI: 10.1100/2012/872173.
|
[47] |
CHEN Y H, LO R Y. Alzheimer's disease and osteoporosis[J]. Ci Ji Yi Xue Za Zhi, 2017, 29(3):138-142. DOI: 10.4103/tcmj.tcmj_54_17.
|
[48] |
LLABRE J E, GIL C, AMATYA N, et al. Degradation of bone quality in a transgenic mouse model of Alzheimer's disease[J]. J Bone Miner Res, 2022, 37(12):2548-2565. DOI: 10.1002/jbmr.4723.
|
[49] |
CUI S, XIONG F, HONG Y, et al. APPswe/Aβ regulation of osteoclast activation and RAGE expression in an age-dependent manner[J]. J Bone Miner Res, 2011, 26(5):1084-1098. DOI: 10.1002/jbmr.299.
|
[50] |
LIU X X, CHEN C Y, JIANG Y L, et al. Brain-derived extracellular vesicles promote bone-fat imbalance in Alzheimer's disease[J]. Int J Biol Sci, 2023, 19(8):2409-2427. DOI: 10.7150/ijbs.79461.
|
[51] |
DIMITRI P, ROSEN C. The central nervous system and bone metabolism:an evolving story[J]. Calcif Tissue Int, 2017, 100(5):476-485. DOI: 10.1007/s00223-016-0179-6.
|
[52] |
FRIEDLAND R P, FRITSCH T, SMYTH K A, et al. Patients with Alzheimer's disease have reduced activities in midlife compared with healthy control-group members[J]. Proc Natl Acad Sci U S A, 2001, 98(6):3440-3445. DOI: 10.1073/pnas.061002998.
|
[53] |
KUMAR S, CHANDNANI A, AUNG N H, et al. Alzheimer's disease and its association with bone health:a case-control study[J]. Cureus, 2021, 13(3):e13772. DOI: 10.7759/cureus.13772.
|
[54] |
PU Z P, TANG X Q, FEI Y E, et al. Bone metabolic biomarkers and bone mineral density in male patients with early-stage Alzheimer's disease[J]. Eur Geriatr Med, 2020, 11(3):403-408. DOI: 10.1007/s41999-020-00289-z.
|
[55] |
LUCKHAUS C, MAHABADI B, GRASS-KAPANKE B, et al. Blood biomarkers of osteoporosis in mild cognitive impairment and Alzheimer's disease[J]. J Neural Transm, 2009, 116(7):905-911. DOI: 10.1007/s00702-009-0241-x.
|
[56] |
JIA R X, LIANG J H, XU Y, et al. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease:a meta-analysis[J]. BMC Geriatr, 2019, 19(1):181. DOI: 10.1186/s12877-019-1175-2.
|
[57] |
POWER R, PRADO-CABRERO A, MULCAHY R, et al. The role of nutrition for the aging population:implications for cognition and Alzheimer's disease[J]. Annu Rev Food Sci Technol, 2019, 10:619-639. DOI: 10.1146/annurev-food-030216-030125.
|
[58] |
MELO VAN LENT D, EGERT S, WOLFSGRUBER S, et al. Low serum vitamin D status is associated with incident Alzheimer's dementia in the oldest old[J]. Nutrients, 2022, 15(1):61. DOI: 10.3390/nu15010061.
|
[59] |
ZULLO A R, ZHANG T T, LEE Y, et al. Effect of bisphosphonates on fracture outcomes among frail older adults[J]. J Am Geriatr Soc, 2019, 67(4):768-776. DOI: 10.1111/jgs.15725.
|
[60] |
ZULLO A R, LEE Y, LARY C, et al. Comparative effectiveness of denosumab,teriparatide,and zoledronic acid among frail older adults:a retrospective cohort study[J]. Osteoporos Int, 2021, 32(3):565-573. DOI: 10.1007/s00198-020-05732-2.
|
[61] |
YUAN J, PEDRINI S, THOTA R, et al. Elevated plasma sclerostin is associated with high brain amyloid-β load in cognitively normal older adults[J]. NPJ Aging, 2023, 9(1):17. DOI: 10.1038/s41514-023-00114-4.
|
[62] |
VESTERGAARD KVIST A, FARUQUE J, VALLEJO-YAGÜE E, et al. Cardiovascular safety profile of romosozumab:a pharmacovigilance analysis of the US food and drug administration adverse event reporting system(FAERS)[J]. J Clin Med, 2021, 10(8):1660. DOI: 10.3390/jcm10081660.
|
[63] |
ZAMEER S, ALI J, VOHORA D, et al. Development,optimisation and evaluation of chitosan nanoparticles of alendronate against Alzheimer's disease in intracerebroventricular streptozotocin model for brain delivery[J]. J Drug Target, 2021, 29(2):199-216. DOI: 10.1080/1061186X.2020.1817041.
|
[64] |
JOSEPHSON C B, GONZALEZ-IZQUIERDO A, DENAXAS S, et al. Independent associations of incident epilepsy and enzyme-inducing and non-enzyme-inducing antiseizure medications with the development of osteoporosis[J]. JAMA Neurol, 2023, 80(8):843-850. DOI: 10.1001/jamaneurol.2023.1580.
|
[65] |
BADDOO D R, MILLS A A, KULLAB R B, et al. Metabolic bone disease in patients with epilepsy and the use of antiepileptic drugs - Insight from a Danish cross-sectional study[J]. Seizure, 2021, 86:29-34. DOI: 10.1016/j.seizure.2021.01.008.
|
[66] |
SCHOUSBOE J T, BINKLEY N, LESLIE W D. Liver enzyme inducing anticonvulsant drug use is associated with prevalent vertebral fracture[J]. Osteoporos Int, 2023, 34(10):1793-1798. DOI: 10.1007/s00198-023-06820-9.
|
[67] |
MIZIAK B, CHROŚCIŃSKA-KRAWCZYK M, CZUCZWAR S J. An update on the problem of osteoporosis in people with epilepsy taking antiepileptic drugs[J]. Expert Opin Drug Saf, 2019, 18(8):679-689. DOI: 10.1080/14740338.2019.1625887.
|
[68] |
SINISCALCHI A, MURPHY S, CIONE E, et al. Antiepileptic drugs and bone health:current concepts[J]. Psychopharmacol Bull, 2020, 50(2):36-44. DOI: 10.1001/archneur.59.5.781.
|
[69] |
SHARAWAT I K, DAWMAN L. Bone turnover analysis and vitamin D status in children with epilepsy[J]. Seizure, 2019, 73:83. DOI: 10.1016/j.seizure.2019.07.013.
|
[70] |
DIEMAR S S, SEJLING A S, EIKEN, et al. Effects of carbamazepine,eslicarbazepine,valproic acid and levetiracetam on bone microarchitecture in rats[J]. Pharmacol Rep, 2020, 72(5):1323-1333. DOI: 10.1007/s43440-020-00087-1.
|
[22] |
FENG S H, HUANG Y P, YEH K C, et al. Osteoporosis and the risk of Parkinson's disease:a nationwide,propensity score-matched,longitudinal follow-up study[J]. J Clin Endocrinol Metab, 2021, 106(2):e763-771. DOI: 10.1210/clinem/dgaa864.
|
[23] |
FIGUEROA C A, ROSEN C J. Parkinson's disease and osteoporosis:basic and clinical implications[J]. Expert Rev Endocrinol Metab, 2020, 15(3):185-193. DOI: 10.1080/17446651.2020.1756772.
|
[24] |
METTA V, SANCHEZ T C, PADMAKUMAR C. Osteoporosis:a hidden nonmotor face of Parkinson's disease[J]. Int Rev Neurobiol, 2017, 134:877-890. DOI: 10.1016/bs.irn.2017.05.034.
|
[71] |
NISSEN-MEYER L S, SVALHEIM S, TAUBØLL E, et al. Levetiracetam,phenytoin,and valproate act differently on rat bone mass,structure,and metabolism[J]. Epilepsia, 2007, 48(10):1850-1860. DOI: 10.1111/j.1528-1167.2007.01176.x.
|
[72] |
SEENS H, MODARRESI S, MACDERMID J C, et al. Prevalence of bone fractures among children and adolescents with attention-deficit/hyperactivity disorder:a systematic review and meta-analysis[J]. BMC Pediatr, 2021, 21(1):354. DOI: 10.1186/s12887-021-02821-x.
|
[73] |
PAZOS-PÉREZ A, PIÑEIRO-RAMIL M, FRANCO-TREPAT E, et al. Methylphenidate promotes premature growth plate closure:in vitro evidence[J]. Int J Mol Sci, 2023, 24(4):4175. DOI: 10.3390/ijms24044175.
|
[74] |
UDDIN S M Z, ROBISON L S, FRICKE D, et al. Methylphenidate regulation of osteoclasts in a dose- and sex-dependent manner adversely affects skeletal mechanical integrity[J]. Sci Rep, 2018, 8(1):1515. DOI: 10.1038/s41598-018-19894-x.
|
[75] |
CHIROKIKH A A, UDDIN S M Z, AREIKAT N, et al. Combined methylphenidate and fluoxetine treatment in adolescent rats significantly impairs weight gain with minimal effects on skeletal development[J]. Bone, 2023, 167:116637. DOI: 10.1016/j.bone.2022.116637.
|
[76] |
XU J, YU L X, LIU F, et al. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis:a review[J]. Front Immunol, 2023, 14:1222129. DOI: 10.3389/fimmu.2023.1222129.
|
[77] |
D'AMELIO P, GRIMALDI A, BERNABEI P, et al. Immune system and bone metabolism:does thymectomy influence postmenopausal bone loss in humans?[J]. Bone, 2006, 39(3):658-665. DOI: 10.1016/j.bone.2006.03.009.
|
[78] |
LV F, GUAN Y Z, MA D D, et al. Effects of alendronate and alfacalcidol on bone in patients with myasthenia gravis initiating glucocorticoids treatment[J]. Clin Endocrinol, 2018, 88(3):380-387. DOI: 10.1111/cen.13537.
|
[79] |
KESIKBURUN S, GÜZELKÜÇÜK U, ALAY S, et al. Exacerbation of myasthenia gravis by alendronate[J]. Osteoporos Int, 2014, 25(9):2319-2320. DOI: 10.1007/s00198-014-2768-4.
|
[80] |
ROSSINI M, ADAMI S, VIAPIANA O, et al. Acute phase response after zoledronic acid is associated with long-term effects on white blood cells[J]. Calcif Tissue Int, 2013, 93(3):249-252. DOI: 10.1007/s00223-013-9750-6.
|
[81] |
KANEKO J, OKINAGA T, HIKIJI H, et al. Zoledronic acid exacerbates inflammation through M1 macrophage polarization[J]. Inflamm Regen, 2018, 38:16. DOI: 10.1186/s41232-018-0074-9.
|
[82] |
ODAME I, DUCKWORTH J, TALSMA D, et al. Osteopenia,physical activity and health-related quality of life in survivors of brain tumors treated in childhood[J]. Pediatr Blood Cancer, 2006, 46(3):357-362. DOI: 10.1002/pbc.20512.
|
[83] |
KANG M J, KIM S M, LEE Y A, et al. Risk factors for osteoporosis in long-term survivors of intracranial germ cell tumors[J]. Osteoporos Int, 2012, 23(7):1921-1929. DOI: 10.1007/s00198-011-1821-9.
|
[84] |
BOSCO F, GUARNIERI L, NUCERA S, et al. Pathophysiological aspects of muscle atrophy and osteopenia induced by chronic constriction injury(CCI)of the sciatic nerve in rats[J]. Int J Mol Sci, 2023, 24(4):3765. DOI: 10.3390/ijms24043765.
|
[85] |
SHIMADA N, SAKATA A, IGARASHI T, et al. M1 macrophage infiltration exacerbate muscle/bone atrophy after peripheral nerve injury[J]. BMC Musculoskelet Disord, 2020, 21(1):44. DOI: 10.1186/s12891-020-3069-z.
|