| [1] | 
																						 
											  国家国民体质监测中心. 第五次国民体质监测公报[EB/OL]. (2021-12-30)[2022-01-22].  
											 											 | 
										
																													
																						| [2] | 
																						 
											  World Obesity Federation Global Obesity Observatory. Scorecards - Obesity:missing the 2025 targets[EB/OL]. [2022-01-22].  
											 											 | 
										
																													
																						| [3] | 
																						 
											 LIN J D,  WU P H,  TARR P T,et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice[J].  Cell, 2004, 119(1):121-135. DOI: 10.1016/j.cell.2004.09.013.  
											 											 | 
										
																													
																						| [4] | 
																						 
											 DYE L,  BOYLE N B,  CHAMP C,et al. The relationship between obesity and cognitive health and decline[J].  Proc Nutr Soc, 2017, 76(4):443-454. DOI: 10.1017/S0029665117002014.  
											 											 | 
										
																													
																						| [5] | 
																						 
											 CRISPINO M,  TRINCHESE G,  PENNA E,et al. Interplay between peripheral and central inflammation in obesity-promoted disorders:the impact on synaptic mitochondrial functions[J].  Int J Mol Sci, 2020, 21(17):E5964. DOI: 10.3390/ijms21175964.  
											 											 | 
										
																													
																						| [6] | 
																						 
											 SRIPETCHWANDEE J,  CHATTIPAKORN N,  CHATTIPAKORN S C. Links between obesity-induced brain insulin resistance,brain mitochondrial dysfunction,and dementia[J].  Front Endocrinol (Lausanne), 2018, 9:496. DOI: 10.3389/fendo.2018.00496.  
											 											 | 
										
																													
																						| [7] | 
																						 
											 CAI Q,  TAMMINENI P. Alterations in mitochondrial quality control in Alzheimer's disease[J].  Front Cell Neurosci, 2016, 10:24. DOI: 10.3389/fncel.2016.00024.  
											 											 | 
										
																													
																						| [8] | 
																						 
											 RODRIGUEZ A L,  WHITEHURST M,  FICO B G,et al. Acute high-intensity interval exercise induces greater levels of serum brain-derived neurotrophic factor in obese individuals[J].  Exp Biol Med (Maywood), 2018, 243(14):1153-1160. DOI: 10.1177/1535370218812191.  
											 											 | 
										
																													
																						| [9] | 
																						 
											 DOMÍNGUEZ-SANCHÉZ M A,  BUSTOS-CRUZ R H,  VELASCO-ORJUELA G P,et al. Acute effects of high intensity,resistance,or combined protocol on the increase of level of neurotrophic factors in physically inactive overweight adults:the BrainFit study[J].  Front Physiol, 2018, 9:741. DOI: 10.3389/fphys.2018.00741.  
											 											 | 
										
																													
																						| [10] | 
																						 
											 KONOPKA A R,  ASANTE A,  LANZA I R,et al. Defects in mitochondrial efficiency and H 2O 2 emissions in obese women are restored to a lean phenotype with aerobic exercise training[J].  Diabetes, 2015, 64(6):2104-2115. DOI: 10.2337/db14-1701.  
											 											 | 
										
																													
																						| [11] | 
																						 
											 LAHERA V,  DE LAS HERAS N,  LÓPEZ-FARRÉ A,et al. Role of mitochondrial dysfunction in hypertension and obesity[J].  Curr Hypertens Rep, 2017, 19(2):11. DOI: 10.1007/s11906-017-0710-9.  
											 											 | 
										
																													
																						| [12] | 
																						 
											 DE MELLO A H,  COSTA A B,  ENGEL J D G,et al. Mitochondrial dysfunction in obesity[J].  Life Sci, 2018, 192:26-32. DOI: 10.1016/j.lfs.2017.11.019.  
											 											 | 
										
																													
																						| [13] | 
																						 
											 CUNARRO J,  CASADO S,  LUGILDE J,et al. Hypothalamic mitochondrial dysfunction as a target in obesity and metabolic disease[J].  Front Endocrinol (Lausanne), 2018, 9:283. DOI: 10.3389/fendo.2018.00283.  
											 											 | 
										
																													
																						| [14] | 
																						 
											 MARKHAM A,  BAINS R,  FRANKLIN P,et al. Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders:how important is BDNF?[J].  Br J Pharmacol, 2014, 171(8):2206-2229. DOI: 10.1111/bph.12531.  
											 											 | 
										
																													
																						| [15] | 
																						 
											 WANG D M,  YAN J Q,  CHEN J,et al. Naringin improves neuronal insulin signaling,brain mitochondrial function,and cognitive function in high-fat diet-induced obese mice[J].  Cell Mol Neurobiol, 2015, 35(7):1061-1071. DOI: 10.1007/s10571-015-0201-y.  
											 											 | 
										
																													
																						| [16] | 
																						 
											 SA-NGUANMOO P,  TANAJAK P,  KERDPHOO S,et al. FGF21 improves cognition by restored synaptic plasticity,dendritic spine density,brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats[J].  Horm Behav, 2016, 85:86-95. DOI: 10.1016/j.yhbeh.2016.08.006.  
											 											 | 
										
																													
																						| [17] | 
																						 
											 HO L,  VARGHESE M,  WANG J,et al. Dietary supplementation with decaffeinated green coffee improves diet-induced insulin resistance and brain energy metabolism in mice[J].  Nutr Neurosci, 2012, 15(1):37-45. DOI: 10.1179/1476830511Y.0000000027.  
											 											 | 
										
																													
																						| [18] | 
																						 
											 PATTI M E,  CORVERA S. The role of mitochondria in the pathogenesis of type 2 diabetes[J].  Endocr Rev, 2010, 31(3):364-395. DOI: 10.1210/er.2009-0027.  
											 											 | 
										
																													
																						| [19] | 
																						 
											 YAMASHIMA T,  OTA T,  MIZUKOSHI E,et al. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases[J].  Adv Nutr, 2020, 11(6):1489-1509. DOI: 10.1093/advances/nmaa072.  
											 											 | 
										
																													
																						| [20] | 
																						 
											 LEE S,  KIM J Y,  KIM E,et al. Assessment of cognitive impairment in a mouse model of high-fat diet-induced metabolic stress with touchscreen-based automated battery system[J].  Exp Neurobiol, 2018, 27(4):277-286. DOI: 10.5607/en.2018.27.4.277.  
											 											 | 
										
																													
																						| [21] | 
																						 
											 XU L,  XU S,  LIN L F,et al. High-fat diet mediates anxiolytic-like behaviors in a time-dependent manner through the regulation of SIRT1 in the brain[J].  Neuroscience, 2018, 372:237-245. DOI: 10.1016/j.neuroscience.2018.01.001.  
											 											 | 
										
																													
																						| [22] | 
																						 
											 YANG J L,  LIU D X,  JIANG H,et al. The effects of high-fat-diet combined with chronic unpredictable mild stress on depression-like behavior and leptin/LepRb in male rats[J].  Sci Rep, 2016, 6:35239. DOI: 10.1038/srep35239.  
											 											 | 
										
																													
																						| [23] | 
																						 
											 CHOI J M,  LEE S I,  CHO E J. Effect of Vigna angularis on high-fat diet-induced memory and cognitive impairments[J].  J Med Food, 2020, 23(11):1155-1162. DOI: 10.1089/jmf.2019.4644.  
											 											 | 
										
																													
																						| [24] | 
																						 
											 TUCSEK Z,  TOTH P,  TARANTINI S,et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction,neurovascular uncoupling,and cognitive decline in mice[J].  J Gerontol Ser A Biol Sci Med Sci, 2014, 69(11):1339-1352. DOI: 10.1093/gerona/glu080.  
											 											 | 
										
																													
																						| [25] | 
																						 
											 MARQUES NETO S R,  CASTIGLIONE R C,  DA SILVA T C B,et al. Effects of high intensity interval training on neuro-cardiovascular dynamic changes and mitochondrial dysfunction induced by high-fat diet in rats[J].  PLoS One, 2020, 15(10):e0240060. DOI: 10.1371/journal.pone.0240060.  
											 											 | 
										
																													
																						| [26] | 
																						 
											 PLUM L,  SCHUBERT M,  BRÜNING J C. The role of insulin receptor signaling in the brain[J].  Trends Endocrinol Metab, 2005, 16(2):59-65. DOI: 10.1016/j.tem.2005.01.008.  
											 											 | 
										
																													
																						| [27] | 
																						 
											 KULLMANN S,  KLEINRIDDERS A,  SMALL D M,et al. Central nervous pathways of insulin action in the control of metabolism and food intake[J].  Lancet Diabetes Endocrinol, 2020, 8(6):524-534. DOI: 10.1016/S2213-8587(20)30113-3.  
											 											 | 
										
																													
																						| [28] | 
																						 
											 KOTHARI V,  LUO Y W,  TORNABENE T,et al. High fat diet induces brain insulin resistance and cognitive impairment in mice[J].  Biochim Biophys Acta BBA Mol Basis Dis, 2017, 1863(2):499-508. DOI: 10.1016/j.bbadis.2016.10.006.  
											 											 | 
										
																													
																						| [29] | 
																						 
											 MACIEJCZYK M,  ZEBROWSKA E,  CHABOWSKI A. Insulin resistance and oxidative stress in the brain:what's new?[J].  Int J Mol Sci, 2019, 20(4):E874. DOI: 10.3390/ijms20040874.  
											 											 | 
										
																													
																						| [30] | 
																						 
											 POMYTKIN I,  PINELIS V. Brain insulin resistance:focus on insulin receptor-mitochondria interactions[J].  Life (Basel), 2021, 11(3):262. DOI: 10.3390/life11030262.  
											 											 | 
										
																													
																						| [31] | 
																						 
											 PIPATPIBOON N,  PRATCHAYASAKUL W,  CHATTIPAKORN N,et al. PPARγ agonist improves neuronal insulin receptor function in Hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets[J].  Endocrinology, 2012, 153(1):329-338. DOI: 10.1210/en.2011-1502.  
											 											 | 
										
																													
																						| [32] | 
																						 
											 BEIRAMI E,  ORYAN S,  SEYEDHOSSEINI TAMIJANI S M,et al. Intranasal insulin treatment restores cognitive deficits and insulin signaling impairment induced by repeated methamphetamine exposure[J].  J Cell Biochem, 2018, 119(2):2345-2355. DOI: 10.1002/jcb.26398.  
											 											 | 
										
																													
																						| [33] | 
																						 
											 NEHA,  KUMAR A,  JAGGI A S,et al. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia[J].  Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(8):777-787. DOI: 10.1007/s00210-014-0990-4.  
											 											 | 
										
																													
																						| [34] | 
																						 
											 KIM J D,  YOON N A,  JIN S,et al. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding[J].  Cell Metab, 2019, 30(5):952-962.e5. DOI: 10.1016/j.cmet.2019.08.010.  
											 											 | 
										
																													
																						| [35] | 
																						 
											 
											 											 | 
										
																													
																						| [36] | 
																						 
											 
											 											 | 
										
																													
																						| [37] | 
																						 
											 KIM M J,  YOON J H,  RYU J H. Mitophagy:a balance regulator of NLRP3 inflammasome activation[J].  BMB Rep, 2016, 49(10):529-535. DOI: 10.5483/bmbrep.2016.49.10.115.  
											 											 | 
										
																													
																						| [38] | 
																						 
											 PRIETO G A,  SNIGDHA S,  BAGLIETTO-VARGAS D,et al. Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1β in the aged Hippocampus[J].  PNAS, 2015, 112(36):E5078-5087. DOI: 10.1073/pnas.1514486112.  
											 											 | 
										
																													
																						| [39] | 
																						 
											 TAN B L,  NORHAIZAN M E. Effect of high-fat diets on oxidative stress,cellular inflammatory response and cognitive function[J].  Nutrients, 2019, 11(11):E2579. DOI: 10.3390/nu11112579.  
											 											 | 
										
																													
																						| [40] | 
																						 
											 JASSIM A H,  INMAN D M,  MITCHELL C H. Crosstalk between dysfunctional mitochondria and inflammation in glaucomatous neurodegeneration[J].  Front Pharmacol, 2021, 12:699623. DOI: 10.3389/fphar.2021.699623.  
											 											 | 
										
																													
																						| [41] | 
																						 
											 WILKINS H M,  CARL S M,  GREENLIEF A C S,et al. Bioenergetic dysfunction and inflammation in Alzheimer's disease:a possible connection[J].  Front Aging Neurosci, 2014, 6:311. DOI: 10.3389/fnagi.2014.00311.  
											 											 | 
										
																													
																						| [42] | 
																						 
											 DAVIS C H O,  KIM K Y,  BUSHONG E A,et al. Transcellular degradation of axonal mitochondria[J].  Proc Natl Acad Sci U S A, 2014, 111(26):9633-9638. DOI: 10.1073/pnas.1404651111.  
											 											 | 
										
																													
																						| [43] | 
																						 
											 LI F,  LIU B B,  CAI M,et al. Excessive endoplasmic Reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise[J].  Brain Res Bull, 2018, 140:52-59. DOI: 10.1016/j.brainresbull.2018.04.003.  
											 											 | 
										
																													
																						| [44] | 
																						 
											 CAI M,  WANG H,  LI J J,et al. The signaling mechanisms of hippocampal endoplasmic Reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise[J].  Brain Behav Immun, 2016, 57:347-359. DOI: 10.1016/j.bbi.2016.05.010.  
											 											 | 
										
																													
																						| [45] | 
																						 
											 CAI M,  HU J Y,  LIU B B,et al. The molecular mechanisms of excessive hippocampal endoplasmic Reticulum stress depressing cognition-related proteins expression and the regulatory effects of Nrf2[J].  Neuroscience, 2020, 431:152-165. DOI: 10.1016/j.neuroscience.2020.02.001.  
											 											 | 
										
																													
																						| [46] | 
																						 
											 BHANDARY B,  MARAHATTA A,  KIM H R,et al. An involvement of oxidative stress in endoplasmic Reticulum stress and its associated diseases[J].  Int J Mol Sci, 2012, 14(1):434-456. DOI: 10.3390/ijms14010434.  
											 											 | 
										
																													
																						| [47] | 
																						 
											 ARRUDA A P,  PERS B M,  PARLAKGÜL G,et al. Chronic enrichment of hepatic endoplasmic Reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity[J].  Nat Med, 2014, 20(12):1427-1435. DOI: 10.1038/nm.3735.  
											 											 | 
										
																													
																						| [48] | 
																						 
											 BORYS J,  MACIEJCZYK M,  ANTONOWICZ B,et al. Glutathione metabolism,mitochondria activity,and nitrosative stress in patients treated for mandible fractures[J].  J Clin Med, 2019, 8(1):E127. DOI: 10.3390/jcm8010127.  
											 											 | 
										
																													
																						| [49] | 
																						 
											 FREEMAN L R,  ZHANG L,  NAIR A,et al. Obesity increases cerebrocortical reactive oxygen species and impairs brain function[J].  Free Radic Biol Med, 2013, 56:226-233. DOI: 10.1016/j.freeradbiomed.2012.08.577.  
											 											 | 
										
																													
																						| [50] | 
																						 
											 MORRISON C D,  PISTELL P J,  INGRAM D K,et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice:implications for decreased Nrf2 signaling[J].  J Neurochem, 2010, 114(6):1581-1589. DOI: 10.1111/j.1471-4159.2010.06865.x.  
											 											 | 
										
																													
																						| [51] | 
																						 
											 MA W W,  DING B J,  WANG L J,et al. Involvement of nuclear related factor 2 signaling pathway in the brain of obese rats and obesity-resistant rats induced by high-fat diet[J].  J Med Food, 2016, 19(4):404-409. DOI: 10.1089/jmf.2015.3500.  
											 											 | 
										
																													
																						| [52] | 
																						 
											 PINTANA H,  SRIPETCHWANDEE J,  SUPAKUL L,et al. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats[J].  Appl Physiol Nutr Metab, 2014, 39(12):1373-1379. DOI: 10.1139/apnm-2014-0255.  
											 											 | 
										
																													
																						| [53] | 
																						 
											 CAMPBELL W W,  KRAUS W E,  POWELL K E,et al. High-intensity interval training for cardiometabolic disease prevention[J].  Med Sci Sports Exerc, 2019, 51(6):1220-1226. DOI: 10.1249/MSS.0000000000001934.  
											 											 | 
										
																													
																						| [54] | 
																						 
											 DA SILVA M A R,  BAPTISTA L C,  NEVES R S,et al. The effects of concurrent training combining both resistance exercise and high-intensity interval training or moderate-intensity continuous training on metabolic syndrome[J].  Front Physiol, 2020, 11:572. DOI: 10.3389/fphys.2020.00572.  
											 											 | 
										
																													
																						| [55] | 
																						 
											 VIANA R B,  NAVES J P A,  COSWIG V S,et al. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT)[J].  Br J Sports Med, 2019, 53(10):655-664. DOI: 10.1136/bjsports-2018-099928.  
											 											 | 
										
																													
																						| [56] | 
																						 
											 WEWEGE M,  VAN DEN BERG R,  WARD R E,et al. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults:a systematic review and meta-analysis[J].  Obes Rev, 2017, 18(6):635-646. DOI: 10.1111/obr.12532.  
											 											 | 
										
																													
																						| [57] | 
																						 
											 ROBINSON M M,  LOWE V J,  NAIR K S. Increased brain glucose uptake after 12 weeks of aerobic high-intensity interval training in young and older adults[J].  J Clin Endocrinol Metab, 2018, 103(1):221-227. DOI: 10.1210/jc.2017-01571.  
											 											 | 
										
																													
																						| [58] | 
																						 
											 DRIGNY J,  GREMEAUX V,  DUPUY O,et al. Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients:a pilot study[J].  J Rehabil Med, 2014, 46(10):1050-1054. DOI: 10.2340/16501977-1905.  
											 											 | 
										
																													
																						| [59] | 
																						 
											 BERNARDO T C,  MARQUES-ALEIXO I,  BELEZA J,et al. Physical exercise and brain mitochondrial fitness:the possible role against Alzheimer's disease[J].  Brain Pathol, 2016, 26(5):648-663. DOI: 10.1111/bpa.12403.  
											 											 | 
										
																													
																						| [60] | 
																						 
											 GAN Z J,  FU T T,  KELLY D P,et al. Skeletal muscle mitochondrial remodeling in exercise and diseases[J].  Cell Res, 2018, 28(10):969-980. DOI: 10.1038/s41422-018-0078-7.  
											 											 | 
										
																													
																						| [61] | 
																						 
											 LUCAS S J,  COTTER J D,  BRASSARD P,et al. High-intensity interval exercise and cerebrovascular health:curiosity,cause,and consequence[J].  J Cereb Blood Flow Metab, 2015, 35(6):902-911. DOI: 10.1038/jcbfm.2015.49.  
											 											 | 
										
																													
																						| [62] | 
																						 
											 TAKIMOTO M,  HAMADA T. Acute exercise increases brain region-specific expression of MCT1,MCT2,MCT4,GLUT1,and COX IV proteins[J].  J Appl Physiol (1985), 2014, 116(9):1238-1250. DOI: 10.1152/japplphysiol.01288.2013.  
											 											 | 
										
																													
																						| [63] | 
																						 
											 GUSDON A M,  CALLIO J,  DISTEFANO G,et al. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice[J].  Exp Gerontol, 2017, 90:1-13. DOI: 10.1016/j.exger.2017.01.013.  
											 											 | 
										
																													
																						| [64] | 
																						 
											 RAI S,  CHOWDHURY A,  RENIERS R L E P,et al. A pilot study to assess the effect of acute exercise on brain glutathione[J].  Free Radic Res, 2018, 52(1):57-69. DOI: 10.1080/10715762.2017.1411594.  
											 											 | 
										
																													
																						| [65] | 
																						 
											 FREITAS D A,  ROCHA-VIEIRA E,  SOARES B A,et al. High intensity interval training modulates hippocampal oxidative stress,BDNF and inflammatory mediators in rats[J].  Physiol Behav, 2018, 184:6-11. DOI: 10.1016/j.physbeh.2017.10.027.  
											 											 | 
										
																													
																						| [66] | 
																						 
											 MELO C S,  ROCHA-VIEIRA E,  FREITAS D A,et al. A single session of high-intensity interval exercise increases antioxidants defenses in the hippocampus of Wistar rats[J].  Physiol Behav, 2019, 211:112675. DOI: 10.1016/j.physbeh.2019.112675.  
											 											 | 
										
																													
																						| [67] | 
																						 
											 FETER N,  SPANEVELLO R M,  SOARES M S P,et al. How does physical activity and different models of exercise training affect oxidative parameters and memory?[J].  Physiol Behav, 2019, 201:42-52. DOI: 10.1016/j.physbeh.2018.12.002.  
											 											 | 
										
																													
																						| [68] | 
																						 
											 LI B X,  LIANG F,  DING X Y,et al. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics[J].  Behav Brain Res, 2019, 376:112171. DOI: 10.1016/j.bbr.2019.112171.  
											 											 | 
										
																													
																						| [69] | 
																						 
											 HU J Y,  CAI M,  SHANG Q H,et al. Elevated lactate by high-intensity interval training regulates the hippocampal BDNF expression and the mitochondrial quality control system[J].  Front Physiol, 2021, 12:629914. DOI: 10.3389/fphys.2021.629914.  
											 											 | 
										
																													
																						| [70] | 
																						 
											 RAEFSKY S M,  MATTSON M P. Adaptive responses of neuronal mitochondria to bioenergetic challenges:roles in neuroplasticity and disease resistance[J].  Free Radic Biol Med, 2017, 102:203-216. DOI: 10.1016/j.freeradbiomed.2016.11.045.  
											 											 | 
										
																													
																						| [71] | 
																						 
											 ZHANG F,  ZHANG L,  QI Y,et al. Mitochondrial cAMP signaling[J].  Cell Mol Life Sci, 2016, 73(24):4577-4590. DOI: 10.1007/s00018-016-2282-2.  
											 											 | 
										
																													
																						| [72] | 
																						 
											 MEYER J N,  LEUTHNER T C,  LUZ A L. Mitochondrial fusion,fission,and mitochondrial toxicity[J].  Toxicology, 2017, 391:42-53. DOI: 10.1016/j.tox.2017.07.019.  
											 											 | 
										
																													
																						| [73] | 
																						 
											 POPOV L D. Mitochondrial biogenesis:an update[J].  J Cell Mol Med, 2020, 24(9):4892-4899. DOI: 10.1111/jcmm.15194.  
											 											 | 
										
																													
																						| [74] | 
																						 
											 E L,  BURNS J M,  SWERDLOW R H. Effect of high-intensity exercise on aged mouse brain mitochondria,neurogenesis,and inflammation[J].  Neurobiol Aging, 2014, 35(11):2574-2583. DOI: 10.1016/j.neurobiolaging.2014.05.033.  
											 											 | 
										
																													
																						| [75] | 
																						 
											 ETTCHETO M,  PETROV D,  PEDRÓS I,et al. Evaluation of neuropathological effects of a high-fat diet in a presymptomatic Alzheimer's disease stage in APP/PS1 mice[J].  J Alzheimers Dis, 2016, 54(1):233-251. DOI: 10.3233/JAD-160150.  
											 											 | 
										
																													
																						| [76] | 
																						 
											 FANIBUNDA S E,  DEB S,  MANIYADATH B,et al. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1-PGC-1α axis[J].  Proc Natl Acad Sci U S A, 2019, 116(22):11028-11037. DOI: 10.1073/pnas.1821332116.  
											 											 | 
										
																													
																						| [77] | 
																						 
											 SONG K,  ZHANG Y F,  GA Q,et al. Increased insulin sensitivity by high-altitude hypoxia in mice with high-fat diet-induced obesity is associated with activated AMPK signaling and subsequently enhanced mitochondrial biogenesis in skeletal muscles[J].  Obes Facts, 2020, 13(5):455-472. DOI: 10.1159/000508112.  
											 											 | 
										
																													
																						| [78] | 
																						 
											 WANG S W,  SHENG H,  BAI Y F,et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice[J].  Nutr Diabetes, 2020, 10(1):27. DOI: 10.1038/s41387-020-00130-3.  
											 											 | 
										
																													
																						| [79] | 
																						 
											 HEINONEN S,  JOKINEN R,  RISSANEN A,et al. White adipose tissue mitochondrial metabolism in health and in obesity[J].  Obes Rev, 2020, 21(2):e12958. DOI: 10.1111/obr.12958.  
											 											 | 
										
																													
																						| [80] | 
																						 
											 E L,  LU J H,  SELFRIDGE J E,et al. Lactate administration reproduces specific brain and liver exercise-related changes[J].  J Neurochem, 2013, 127(1):91-100. DOI: 10.1111/jnc.12394.  
											 											 | 
										
																													
																						| [81] | 
																						 
											 MARQUES-ALEIXO I,  SANTOS-ALVES E,  BALÇA M M,et al. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic,dynamic and auto(mito)phagy markers[J].  Neuroscience, 2015, 301:480-495. DOI: 10.1016/j.neuroscience.2015.06.027.  
											 											 | 
										
																													
																						| [82] | 
																						 
											 STEINER J L,  MURPHY E A,  MCCLELLAN J L,et al. Exercise training increases mitochondrial biogenesis in the brain[J].  J Appl Physiol (1985), 2011, 111(4):1066-1071. DOI: 10.1152/japplphysiol.00343.2011.  
											 											 | 
										
																													
																						| [83] | 
																						 
											 GIBALA M J,  LITTLE J P,  MACDONALD M J,et al. Physiological adaptations to low-volume,high-intensity interval training in health and disease[J].  J Physiol, 2012, 590(5):1077-1084. DOI: 10.1113/jphysiol.2011.224725.  
											 											 |