[1] |
WU Y L, DING Y P, TANAKA Y,et al. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention[J]. Int J Med Sci, 2014, 11(11):1185-1200. DOI: 10.7150/ijms.10001.
|
[2] |
TAN S Y, MEI WONG J L, SIM Y J,et al. Type 1 and 2 diabetes mellitus:a review on current treatment approach and gene therapy as potential intervention[J]. Diabetes Metab Syndr, 2019, 13(1):364-372. DOI: 10.1016/j.dsx.2018.10.008.
|
[3] |
MASSIMINO E, IZZO A, RICCARDI G,et al. The impact of glucose-lowering drugs on sarcopenia in type 2 diabetes:current evidence and underlying mechanisms[J]. Cells, 2021, 10(8):1958. DOI: 10.3390/cells10081958.
|
[4] |
AFSAR B, ELSURER R. Increased renal resistive index in type 2 diabetes:clinical relevance,mechanisms and future directions[J]. Diabetes Metab Syndr, 2017, 11(4):291-296. DOI: 10.1016/j.dsx.2016.08.019.
|
[5] |
LV Z Q, GUO Y J. Metformin and its benefits for various diseases[J]. Front Endocrinol, 2020, 11:191. DOI: 10.3389/fendo.2020.00191.
|
[6] |
SONG A N, ZHANG C, MENG X F. Mechanism and application of metformin in kidney diseases:an update[J]. Biomed Pharmacother, 2021, 138:111454. DOI: 10.1016/j.biopha.2021.111454.
|
[7] |
LAMOIA T E, SHULMAN G I. Cellular and molecular mechanisms of metformin action[J]. Endocr Rev, 2021, 42(1):77-96. DOI: 10.1210/endrev/bnaa023.
|
[8] |
EIBL G, ROZENGURT E. Metformin:review of epidemiology and mechanisms of action in pancreatic cancer[J]. Cancer Metastasis Rev, 2021, 40(3):865-878. DOI: 10.1007/s10555-021-09977-z.
|
[9] |
HAN Y C, TANG S Q, LIU Y T,et al. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice[J]. Cell Death Dis, 2021, 12(10):925. DOI: 10.1038/s41419-021-04184-8.
|
[10] |
AGIUS L, FORD B E, CHACHRA S S. The metformin mechanism on gluconeogenesis and AMPK activation:the metabolite perspective[J]. Int J Mol Sci, 2020, 21(9):3240. DOI: 10.3390/ijms21093240.
|
[11] |
MA T, TIAN X, ZHANG B D,et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2[J]. Nature, 2022, 603(7899):159-165. DOI: 10.1038/s41586-022-04431-8.
|
[12] |
FORETZ M, GUIGAS B, VIOLLET B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15(10):569-589. DOI: 10.1038/s41574-019-0242-2.
|
[13] |
HUA Y, ZHENG Y, YAO Y R,et al. Metformin and cancer hallmarks:shedding new lights on therapeutic repurposing[J]. J Transl Med, 2023, 21(1):403. DOI: 10.1186/s12967-023-04263-8.
|
[14] |
XIAO N, WANG J, WANG T,et al. Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome[J]. Elife, 2022, 11:e74713. DOI: 10.7554/eLife.74713.
|
[15] |
MOHAMMAD H M F, GALAL GOUDA S, ELADL M A,et al. Metformin suppresses LRG1 and TGFβ1/ALK1-induced angiogenesis and protects against ultrastructural changes in rat diabetic nephropathy[J]. Biomed Pharmacother, 2023, 158:114128. DOI: 10.1016/j.biopha.2022.114128.
|
[16] |
PUGLIESE G, PENNO G, NATALI A,et al. Diabetic kidney disease:new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on the natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function[J]. J Nephrol, 2020, 33(1):9-35. DOI: 10.1007/s40620-019-00650-x.
|
[17] |
FADDEN E J, LONGLEY C, MAHAMBREY T. Metformin-associated lactic acidosis[J]. BMJ Case Rep, 2021, 14(7):e239154. DOI: 10.1136/bcr-2020-239154.
|
[18] |
MARIANO F, BIANCONE L. Metformin,chronic nephropathy and lactic acidosis:a multi-faceted issue for the nephrologist[J]. J Nephrol, 2021, 34(4):1127-1135. DOI: 10.1007/s40620-020-00941-8.
|
[19] |
MAURO S D, FILIPPELLO A, SCAMPORRINO A,et al. Metformin:when should we fear lactic acidosis?[J]. Int J Mol Sci, 2022, 23(15):8320. DOI: 10.3390/ijms23158320.
|
[20] |
RAJASURYA V, ANJUM H, SURANI S. Metformin use and metformin-associated lactic acidosis in intensive care unit patients with diabetes[J]. Cureus, 2019, 11(5):e4739. DOI: 10.7759/cureus.4739.
|
[21] |
THAMMAVARANUCUPT K, PHONYANGNOK B, PARAPIBOON W,et al. Metformin-associated lactic acidosis and factors associated with 30-day mortality[J]. PLoS One, 2022, 17(8):e0273678. DOI: 10.1371/journal.pone.0273678.
|
[22] |
ALVAREZ C A, HALM E A, PUGH M J V,et al. Lactic acidosis incidence with metformin in patients with type 2 diabetes and chronic kidney disease:a retrospective nested case-control study[J]. Endocrinol Diabetes Metab, 2021, 4(1):e00170. DOI: 10.1002/edm2.170.
|
[23] |
TRINKLEY K E, ANDERSON H D, NAIR K V,et al. Assessing the incidence of acidosis in patients receiving metformin with and without risk factors for lactic acidosis[J]. Ther Adv Chronic Dis, 2018, 9(9):179-190. DOI: 10.1177/2040622318779760.
|
[24] |
OSHIMA M, SHIMIZU M, YAMANOUCHI M,et al. Trajectories of kidney function in diabetes:a clinicopathological update[J]. Nat Rev Nephrol, 2021, 17(11):740-750. DOI: 10.1038/s41581-021-00462-y.
|
[25] |
LIU P, ZHANG Z D, LI Y. Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease[J]. Front Immunol, 2021, 12:603416. DOI: 10.3389/fimmu.2021.603416.
|
[26] |
SAMSU N. Diabetic nephropathy:challenges in pathogenesis,diagnosis,and treatment[J]. Biomed Res Int, 2021, 2021:1497449. DOI: 10.1155/2021/1497449.
|
[27] |
GUO J, ZHENG H J, ZHANG W T,et al. Accelerated kidney aging in diabetes mellitus[J]. Oxid Med Cell Longev, 2020, 2020:1-24. DOI: 10.1155/2020/1234059.
|
[28] |
PEREIRA P R, CARRAGETA D F, OLIVEIRA P F,et al. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease[J]. Med Res Rev, 2022, 42(4):1518-1544. DOI: 10.1002/med.21883.
|
[29] |
JIN J, SHI Y F, GONG J G,et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte[J]. Stem Cell Res Ther, 2019, 10(1):95. DOI: 10.1186/s13287-019-1177-1.
|
[30] |
SELBY N M, TAAL M W. An updated overview of diabetic nephropathy:diagnosis,prognosis,treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22(Suppl 1):3-15. DOI: 10.1111/dom.14007.
|
[31] |
XUE J, WANG L, SUN Z X,et al. Basic research in diabetic nephropathy health care:a study of the renoprotective mechanism of metformin[J]. J Med Syst, 2019, 43(8):1-13. DOI: 10.1007/s10916-019-1412-4.
|
[32] |
TYPIAK M, KULESZA T, RACHUBIK P,et al. Role of klotho in hyperglycemia:its levels and effects on fibroblast growth factor receptors,glycolysis,and glomerular filtration[J]. Int J Mol Sci, 2021, 22(15):7867. DOI: 10.3390/ijms22157867.
|
[33] |
CHEN X W, TAN H S, XU J,et al. Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling[J]. Kidney Int, 2022, 102(3):506-520. DOI: 10.1016/j.kint.2022.04.028.
|
[34] |
WANG Q, REN D J, LI Y B,et al. Klotho attenuates diabetic nephropathy in db/db mice and ameliorates high glucose-induced injury of human renal glomerular endothelial cells[J]. Cell Cycle, 2019, 18(6/7):696-707. DOI: 10.1080/15384101.2019.1580495.
|
[35] |
TYPIAK M, KULESZA T, RACHUBIK P,et al. Role of klotho in hyperglycemia:its levels and effects on fibroblast growth factor receptors,glycolysis,and glomerular filtration[J]. Int J Mol Sci, 2021, 22(15):7867. DOI: 10.3390/ijms22157867.
|
[36] |
XUE J, WANG L, SUN Z X,et al. Basic research in diabetic nephropathy health care:a study of the renoprotective mechanism of metformin[J]. J Med Syst, 2019, 43(8):266. DOI: 10.1007/s10916-019-1412-4.
|
[37] |
AL-KURAISHY H M, AL-GAREEB A I, SAAD H M,et al. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus(T2DM)[J]. Inflammopharmacology, 2023, 31(4):1751-1760. DOI: 10.1007/s10787-023-01255-4.
|
[38] |
GU L Y, TANG H T, XU Z X. Huangkui capsule in combination with metformin ameliorates diabetic nephropathy via the Klotho/TGF-β1/p38MAPK signaling pathway[J]. J Ethnopharmacol, 2021, 281:113548. DOI: 10.1016/j.jep.2020.113548.
|
[39] |
RENA G, HARDIE D G, PEARSON E R. The mechanisms of action of metformin[J]. Diabetologia, 2017, 60(9):1577-1585. DOI: 10.1007/s00125-017-4342-z.
|
[40] |
REN H W, SHAO Y, WU C,et al. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway[J]. Mol Cell Endocrinol, 2020, 500:110628. DOI: 10.1016/j.mce.2019.110628.
|
[41] |
WANG W N, SUN W X, CHENG Y L,et al. Role of sirtuin-1 in diabetic nephropathy[J]. J Mol Med, 2019, 97(3):291-309. DOI: 10.1007/s00109-019-01743-7.
|
[42] |
XU J, LIU L Q, XU L L,et al. Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis[J]. Clin Exp Pharmacol Physiol, 2020, 47(4):599-608. DOI: 10.1111/1440-1681.13226.
|
[43] |
GAO Y Y, TIAN W, ZHANG H N,et al. Canonical transient receptor potential channels and their modulators:biology,pharmacology and therapeutic potentials[J]. Arch Pharm Res, 2021, 44(4):354-377. DOI: 10.1007/s12272-021-01319-5.
|
[44] |
SZREJDER M, RACHUBIK P, ROGACKA D,et al. Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(3):165610. DOI: 10.1016/j.bbadis.2019.165610.
|
[45] |
YANG H M, XIE T T, LI D R,et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway[J]. Mol Metab, 2019, 23:24-36. DOI: 10.1016/j.molmet.2019.02.007.
|
[46] |
OPAZO-RÍOS L, PLAZA A, SÁNCHEZ MATUS Y,et al. Targeting NF-κB by the cell-permeable NEMO-binding domain peptide improves albuminuria and renal lesions in an experimental model of type 2 diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(12):4225. DOI: 10.3390/ijms21124225.
|
[47] |
ZHANG L, NIU J S, ZHANG X M,et al. Metformin can alleviate the symptom of patient with diabetic nephropathy through reducing the serum level of hcy and IL-33[J]. Open Med, 2019, 14:625-628. DOI: 10.1515/med-2019-0071.
|
[48] |
KANG Z F, ZENG J W, ZHANG T,et al. Hyperglycemia induces NF-κB activation and MCP-1 expression via downregulating GLP-1R expression in rat mesangial cells:inhibition by metformin[J]. Cell Biol Int, 2019, 43(8):940-953. DOI: 10.1002/cbin.11184.
|
[49] |
PATIAL V, KATOCH S, CHHIMWAL J,et al. Tinospora cordifolia activates PPARγ pathway and mitigates glomerular and tubular cell injury in diabetic kidney disease[J]. Phytomedicine, 2021, 91:153663. DOI: 10.1016/j.phymed.2021.153663.
|
[50] |
ABDELKADER N F, IBRAHIM S M, MOUSTAFA P E,et al. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways[J]. Biomed Pharmacother, 2022, 145:112395. DOI: 10.1016/j.biopha.2021.112395.
|
[51] |
TANG D, HE W J, ZHANG Z T,et al. Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice[J]. Phytomedicine, 2022, 95:153777. DOI: 10.1016/j.phymed.2021.153777.
|
[52] |
ISHIBASHI Y, MATSUI T, TAKEUCHI M,et al. Beneficial effects of metformin and irbesartan on advanced glycation end products(AGEs)-RAGE-induced proximal tubular cell injury[J]. Pharmacol Res, 2012, 65(3):297-302. DOI: 10.1016/j.phrs.2011.11.001.
|
[53] |
|
[54] |
ZHU L L, WANG H Y, TANG T. Effects of miR-195 on diabetic nephropathy rats through targeting TLR4 and blocking NF-κB pathway[J]. Eur Rev Med Pharmacol Sci, 2021, 25(3):1522-1529. DOI: 10.26355/eurrev_202102_24860.
|
[55] |
XU J, XIANG P, LIU L Q,et al. Metformin inhibits extracellular matrix accumulation,inflammation and proliferation of mesangial cells in diabetic nephropathy by regulating H19/miR-143-3p/TGF-β1 axis[J]. J Pharm Pharmacol, 2020, 72(8):1101-1109. DOI: 10.1111/jphp.13280.
|
[56] |
LIU S, WU W, LIAO J,et al. MicroRNA-21:a critical pathogenic factor of diabetic nephropathy[J]. Front Endocrinol(Lausanne), 2022, 13:895010. DOI: 10.3389/fendo.2022.895010.
|