[1] |
WHO Coronavirus (COVID-19) Dashboard[EB/OL].[2023-02-15].
|
[2] |
PLUMB I D, FELDSTEIN L R, BARKLEY E,et al. Effectiveness of COVID-19 mRNA vaccination in preventing COVID-19-associated hospitalization among adults with previous SARS-CoV-2 infection - United States,June 2021-february 2022[J]. MMWR Morb Mortal Wkly Rep, 2022, 71(15):549-555. DOI: 10.15585/mmwr.mm7115e2.
|
[3] |
|
[4] |
LEE A R Y B, WONG S Y, CHAI L Y A,et al. Efficacy of covid-19 vaccines in immunocompromised patients:systematic review and meta-analysis[J]. BMJ, 2022, 376:e068632. DOI: 10.1136/bmj-2021-068632.
|
[5] |
SHEN C, RISK M, SCHIOPU E,et al. Efficacy of COVID-19 vaccines in patients taking immunosuppressants[J]. Ann Rheum Dis, 2022, 81(6):875-880. DOI: 10.1136/annrheumdis-2021-222045.
|
[6] |
PARKER E P K, DESAI S, MARTI M,et al. Response to additional COVID-19 vaccine doses in people who are immunocompromised:a rapid review[J]. Lancet Glob Health, 2022, 10(3):e326-328. DOI: 10.1016/S2214-109X(21)00593-3.
|
[7] |
JANUEL E, DE SEZE J, VERMERSCH P,et al. Post-vaccine COVID-19 in patients with multiple sclerosis or neuromyelitis optica[J]. Mult Scler, 2022, 28(7):1155-1159. DOI: 10.1177/13524585211049737.
|
[8] |
GEORGE J A, MAPHAYI M R, PILLAY T. COVID-19 and vulnerable populations in sub-saharan Africa[J]. Adv Exp Med Biol, 2021, 1321:147-162. DOI: 10.1007/978-3-030-59261-5_13.
|
[9] |
OUYANG H, MA X H, WU X. The prevalence and determinants of COVID-19 vaccine hesitancy in the age of infodemic[J]. Hum Vaccin Immunother, 2022, 18(1):2013694. DOI: 10.1080/21645515.2021.2013694.
|
[10] |
XU J B, ZHAO S Z, TENG T S,et al. Systematic comparison of two animal-to-human transmitted human coronaviruses:SARS-CoV-2 and SARS-CoV[J]. Viruses, 2020, 12(2):244. DOI: 10.3390/v12020244.
|
[11] |
YUAN M, WU N C, ZHU X Y,et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV[J]. Science, 2020, 368(6491):630-633. DOI: 10.1126/science.abb7269.
|
[12] |
WANG Q H, ZHANG Y F, WU L L,et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181(4):894-904.e9. DOI: 10.1016/j.cell.2020.03.045.
|
[13] |
WALLS A C, PARK Y J, TORTORICI M A,et al. Structure,function,and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2):281-292.e6. DOI: 10.1016/j.cell.2020.02.058.
|
[14] |
MEYER C U, ZEPP F. Principles in immunology for the design and development of vaccines[J]. Methods Mol Biol, 2022, 2410:27-56. DOI: 10.1007/978-1-0716-1884-4_2.
|
[15] |
PANDA A, ARJONA A, SAPEY E,et al. Human innate immunosenescence:causes and consequences for immunity in old age[J]. Trends Immunol, 2009, 30(7):325-333. DOI: 10.1016/j.it.2009.05.004.
|
[16] |
ABIRI B, AHMADI A R, HEJAZI M,et al. Obesity,diabetes mellitus,and metabolic syndrome:review in the era of COVID-19[J]. Clin Nutr Res, 2022, 11(4):331-346. DOI: 10.7762/cnr.2022.11.4.331.
|
[17] |
LIM S, BAE J H, KWON H S,et al. COVID-19 and diabetes mellitus:from pathophysiology to clinical management[J]. Nat Rev Endocrinol, 2021, 17(1):11-30. DOI: 10.1038/s41574-020-00435-4.
|
[18] |
MOHAMMAD S, AZIZ R, AL MAHRI S,et al. Obesity and COVID-19:what makes obese host so vulnerable?[J]. Immun Ageing, 2021, 18(1):1. DOI: 10.1186/s12979-020-00212-x.
|
[19] |
MARDOMI A,KHOSROSHAHI H T. Dialysis-induced immune dysregulations and their possible impacts on COVID-19[J]. Iran J Kidney Dis,2021,15(3):161-167.
|
[20] |
FAHRNER J E, LAHMAR I, GOUBET A G,et al. The polarity and specificity of antiviral T lymphocyte responses determine susceptibility to SARS-CoV-2 infection in patients with cancer and healthy individuals[J]. Cancer Discov, 2022, 12(4):958-983. DOI: 10.1158/2159-8290.CD-21-1441.
|
[21] |
FERNANDEZ SALINAS A, PIANO MORTARI E, TERRERI S,et al. Impaired memory B-cell response to the Pfizer-BioNTech COVID-19 vaccine in patients with common variable immunodeficiency[J]. J Allergy Clin Immunol, 2022, 149(1):76-77. DOI: 10.1016/j.jaci.2021.08.031.
|
[22] |
CAJAMARCA-BARON J, GUAVITA-NAVARRO D, BUITRAGO-BOHORQUEZ J,et al. SARS-CoV-2 (COVID-19) in patients with some degree of immunosuppression[J]. Reumatol Clin, 2021, 17(7):408-419. DOI: 10.1016/j.reumae.2020.08.001.
|
[23] |
SICA A, COLOMBO M P, TRAMA A,et al. Immunometabolic status of COVID-19 cancer patients[J]. Physiol Rev, 2020, 100(4):1839-1850. DOI: 10.1152/physrev.00018.2020.
|
[24] |
MOR G, ALDO P, ALVERO A B. The unique immunological and microbial aspects of pregnancy[J]. Nat Rev Immunol, 2017, 17(8):469-482. DOI: 10.1038/nri.2017.64.
|
[25] |
SCHUMACHER A, COSTA S D, ZENCLUSSEN A C. Endocrine factors modulating immune responses in pregnancy[J]. Front Immunol, 2014, 5:196. DOI: 10.3389/fimmu.2014.00196.
|
[26] |
WOLTER N, JASSAT W, WALAZA S,et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa:a data linkage study[J]. Lancet, 2022, 399(10323):437-446. DOI: 10.1016/S0140-6736(22)00017-4.
|
[27] |
(新华全媒+)最新发布:2022年12月8日至2023年1月12日全国在院新冠病毒感染相关死亡病例近6万例平均年龄80.3岁[EB/OL].(2023-01-14)[2023-03-22].
|
[28] |
DE GIORGI A, FABBIAN F, GRECO S,et al. Prediction of in-hospital mortality of patients with SARS-CoV-2 infection by comorbidity indexes:an Italian internal medicine single center study[J]. Eur Rev Med Pharmacol Sci, 2020, 24(19):10258-10266. DOI: 10.26355/eurrev_202010_23250.
|
[29] |
DOMINGUEZ-RAMIREZ L, RODRIGUEZ-PEREZ F, SOSA-JURADO F,et al. The role of metabolic comorbidity in COVID-19 mortality of middle-aged adults. The case of Mexico[J]. medRxiv, 2020. DOI: 10.1101/2020.12.15.20244160.
|
[30] |
ROSENTHAL N, CAO Z, GUNDRUM J,et al. Risk factors associated with In-hospital mortality in a US national sample of patients with COVID-19[J]. JAMA Netw Open, 2020, 3(12):e2029058. DOI: 10.1001/jamanetworkopen.2020.29058.
|
[31] |
HARPAZ R, DAHL R M, DOOLING K L. Prevalence of immunosuppression among US adults,2013[J]. JAMA, 2016, 316(23):2547-2548. DOI: 10.1001/jama.2016.16477.
|
[32] |
OWEN C, ROBINSON S, CHRISTOFIDES A,et al. A Canadian perspective:monoclonal antibodies for pre- and post-exposure protection from COVID-19 in vulnerable patients with hematological malignancies[J]. Curr Oncol, 2022, 29(6):3940-3949. DOI: 10.3390/curroncol29060315.
|
[33] |
JAMIESON D J, RASMUSSEN S A. An update on COVID-19 and pregnancy[J]. Am J Obstet Gynecol, 2022, 226(2):177-186. DOI: 10.1016/j.ajog.2021.08.054.
|
[34] |
ZAMBRANO L D, ELLINGTON S, STRID P,et al. Update:characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status - United States,January 22-october 3,2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69(44):1641-1647. DOI: 10.15585/mmwr.mm6944e3.
|
[35] |
ATTAWAY A H, SCHERAGA R G, BHIMRAJ A,et al. Severe covid-19 pneumonia:pathogenesis and clinical management[J]. BMJ, 2021, 372:n436. DOI: 10.1136/bmj.n436.
|
[36] |
RAMAN B, BLUEMKE D A, LÜSCHER T F,et al. Long COVID:post-acute sequelae of COVID-19 with a cardiovascular focus[J]. Eur Heart J, 2022, 43(11):1157-1172. DOI: 10.1093/eurheartj/ehac031.
|
[37] |
PIJLS B G, JOLANI S, ATHERLEY A,et al. Demographic risk factors for COVID-19 infection,severity,ICU admission and death:a meta-analysis of 59 studies[J]. BMJ Open, 2021, 11(1):e044640. DOI: 10.1136/bmjopen-2020-044640.
|
[38] |
GUR R E, WHITE L K, WALLER R,et al. The disproportionate burden of the COVID-19 pandemic among pregnant black women[J]. Psychiatry Res, 2020, 293:113475. DOI: 10.1016/j.psychres.2020.113475.
|
[39] |
KHERA R, JAIN S, LIN Z Q,et al. Evaluation of the anticipated burden of COVID-19 on hospital-based healthcare services across the United States[J]. medRxiv, 2020. DOI: 10.1101/2020.04.01.20050492.
|
[40] |
AVANZATO V A, MATSON M J, SEIFERT S N,et al. Case study:prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer[J]. Cell, 2020, 183(7):1901-1912.e9. DOI: 10.1016/j.cell.2020.10.049.
|
[41] |
COREY L, BEYRER C, COHEN M S,et al. SARS-CoV-2 variants in patients with immunosuppression[J]. N Engl J Med, 2021, 385(6):562-566. DOI: 10.1056/NEJMsb2104756.
|
[42] |
CAI J, DENG X W, YANG J,et al. Modeling transmission of SARS-CoV-2 Omicron in China[J]. Nat Med, 2022, 28(7):1468-1475. DOI: 10.1038/s41591-022-01855-7.
|
[43] |
LOPEZ BERNAL J, ANDREWS N, GOWER C,et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms,hospital admissions,and mortality in older adults in England:test negative case-control study[J]. BMJ, 2021, 373:n1088. DOI: 10.1136/bmj.n1088.
|
[44] |
YAN Z P, YANG M, LAI C L. COVID-19 vaccines:a review of the safety and efficacy of current clinical trials[J]. Pharmaceuticals, 2021, 14(5):406. DOI: 10.3390/ph14050406.
|
[45] |
ZHU F C, ZHUANG C L, CHU K,et al. Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults:randomised,double-blind,placebo-controlled,phase 1 and 2 trials[J]. Lancet Respir Med, 2022, 10(8):749-760. DOI: 10.1016/S2213-2600(22)00131-X.
|
[46] |
FU Z Y, LIANG D G, ZHANG W,et al. Host protection against Omicron BA.2.2 sublineages by prior vaccination in spring 2022 COVID-19 outbreak in Shanghai[J]. Front Med, 2023. DOI: 10.1007/s11684-022-0977-3.
|
[47] |
KRICORIAN K, CIVEN R, EQUILS O. COVID-19 vaccine hesitancy:misinformation and perceptions of vaccine safety[J]. Hum Vaccin Immunother, 2022, 18(1):1950504. DOI: 10.1080/21645515.2021.1950504.
|
[48] |
MURPHY J, VALLIÈRES F, BENTALL R P,et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom[J]. Nat Commun, 2021, 12(1):29. DOI: 10.1038/s41467-020-20226-9.
|
[49] |
TSAI R, HERVEY J, HOFFMAN K D,et al. COVID-19 vaccine hesitancy among individuals with cancer,autoimmune diseases,and other serious comorbid conditions[J]. JMIR Public Health Surveill, 2022, 8(1):e29872. DOI: 10.2196/29872.
|
[50] |
PANTALEO G, CORREIA B, FENWICK C,et al. Antibodies to combat viral infections:development strategies and progress[J]. Nat Rev Drug Discov, 2022, 21(9):676-696. DOI: 10.1038/s41573-022-00495-3.
|
[51] |
JAWORSKI J P. Neutralizing monoclonal antibodies for COVID-19 treatment and prevention[J]. Biomed J, 2021, 44(1):7-17. DOI: 10.1016/j.bj.2020.11.011.
|
[52] |
新型冠状病毒感染诊疗方案(试行第十版)[EB/OL].[2023-03-11].
|
[53] |
ZALEVSKY J, CHAMBERLAIN A K, HORTON H M,et al. Enhanced antibody half-life improves in vivo activity[J]. Nat Biotechnol, 2010, 28(2):157-159. DOI: 10.1038/nbt.1601.
|
[54] |
Fact sheet for healthcare providers:emergency use authorization for bebtelovimab [EB/OL].[2022-11-01].
|
[55] |
Fact sheet for health care providers emergency use authorization (EUA) of bamlanivimab and etesevimab [EB/OL].[2022-01-01].
|
[56] |
Fact sheet for health care providers emergency use authorization(EUA) of REGEN-COV® (casirivimab and imdevimab)[EB/OL].[2022-01-11].
|
[57] |
|
[58] |
LEVIN M J, USTIANOMSKI A, DE WIT S,et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19[J]. N Engl J Med, 2022, 386(23):2188-2200. DOI: 10.1056/NEJMoa2116620.
|
[59] |
LEVIN M J, USTIANOWSKI A, DE WIT S,et al. Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of covid-19[J]. N Engl J Med, 2022, 386(23):2188-2200. DOI: 10.1056/NEJMoa2116620.
|
[60] |
STUVER R, SHAH G L, KORDE N S,et al. Activity of AZD7442 (tixagevimab-cilgavimab) against Omicron SARS-CoV-2 in patients with hematologic malignancies[J]. Cancer Cell, 2022, 40(6):590-591. DOI: 10.1016/j.ccell.2022.05.007.
|
[61] |
AL JURDI A, MORENA L, COTE M,et al. Tixagevimab/cilgavimab pre-exposure prophylaxis is associated with lower breakthrough infection risk in vaccinated solid organ transplant recipients during the omicron wave[J]. Am J Transplant, 2022, 22(12):3130-3136. DOI: 10.1111/ajt.17128.
|
[62] |
NGUYEN Y, FLAHAULT A, CHAVAROT N,et al. Pre-exposure prophylaxis with tixagevimab and cilgavimab (Evusheld) for COVID-19 among 1112 severely immunocompromised patients[J]. Clin Microbiol Infect, 2022, 28(12):1654.e1-1651654.e4. DOI: 10.1016/j.cmi.2022.07.015.
|
[63] |
GRAU-PUJOL B, CAMPRUBÍ-FERRER D, MARTI-SOLER H,et al. Pre-exposure prophylaxis with hydroxychloroquine for COVID-19:a double-blind,placebo-controlled randomized clinical trial[J]. Trials, 2021, 22(1):808. DOI: 10.1186/s13063-021-05758-9.
|
[64] |
MORGENSTERN J, REDONDO J N, OLAVARRIA A,et al. Ivermectin as a SARS-CoV-2 pre-exposure prophylaxis method in healthcare workers:a propensity score-matched retrospective cohort study[J]. Cureus, 2021, 13(8):e17455. DOI: 10.7759/cureus.17455.
|
[65] |
OUYANG J, ZAONGO S D, HARYPURSAT V,et al. SARS-CoV-2 pre-exposure prophylaxis:a potential COVID-19 preventive strategy for high-risk populations,including healthcare workers,immunodeficient individuals,and poor vaccine responders[J]. Front Public Health, 2022, 10:945448. DOI: 10.3389/fpubh.2022.945448.
|
[66] |
GAJEWSKI A, KOŚMIDER A, NOWACKA A,et al. Potential of herbal products in prevention and treatment of COVID-19. Literature review[J]. Biomed Pharmacother, 2021, 143:112150. DOI: 10.1016/j.biopha.2021.112150.
|
[67] |
MA Q H, LI R F, PAN W Q,et al. Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway[J]. Phytomedicine, 2020, 78:153296. DOI: 10.1016/j.phymed.2020.153296.
|