| [1] | 
																						 
											 SAEEDI P,  PETERSOHN I,  SALPEA P,et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:results from the International Diabetes Federation Diabetes Atlas,9th edition[J].  Diabetes Res Clin Pract, 2019, 157:107843. DOI: 10.1016/j.diabres.2019.107843.  
											 											 | 
										
																													
																						| [2] | 
																						 
											 ALDEMIR O,  TURGUT F,  GOKCE C. The association between methylation levels of targeted genes and albuminuria in patients with early diabetic kidney disease[J].  Ren Fail, 2017, 39(1):597-601. DOI: 10.1080/0886022X.2017.1358180.  
											 											 | 
										
																													
																						| [3] | 
																						 
											  刘小株. 基于机器学习算法的2型糖尿病肾脏疾病的辅助诊断研究[D]. 重庆:重庆医科大学,2021. 
											 											 | 
										
																													
																						| [4] | 
																						 
											 AHN H S,  KIM J H,  JEONG H,et al. Differential urinary proteome analysis for predicting prognosis in type 2 diabetes patients with and without renal dysfunction[J].  Int J Mol Sci, 2020, 21(12):4236. DOI: 10.3390/ijms21124236.  
											 											 | 
										
																													
																						| [5] | 
																						 
											 
											 											 | 
										
																													
																						| [6] | 
																						 
											  中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2010年版)[J]. 中国糖尿病杂志,2012,20(1):81-117. 
											 											 | 
										
																													
																						| [7] | 
																						 
											 
											 											 | 
										
																													
																						| [8] | 
																						 
											 FU Q Y,  CHEN Y,  LI Z H,et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images:a retrospective study[J].  EClinicalMedicine, 2020, 27:100558. DOI: 10.1016/j.eclinm.2020.100558.  
											 											 | 
										
																													
																						| [9] | 
																						 
											 VICKERS A J,  ELKIN E B. Decision curve analysis:a novel method for evaluating prediction models[J].  Med Decis Making, 2006, 26(6):565-574. DOI: 10.1177/0272989X06295361.  
											 											 | 
										
																													
																						| [10] | 
																						 
											 ZHU X H,  LI X M,  ONG K,et al. Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears[J].  Nat Commun, 2021, 12(1):3541. DOI: 10.1038/s41467-021-23913-3.  
											 											 | 
										
																													
																						| [11] | 
																						 
											 TAVABIE O D,  KARVELLAS C J,  SALEHI S,et al. A novel microRNA-based prognostic model outperforms standard prognostic models in patients with acetaminophen-induced acute liver failure[J].  J Hepatol, 2021, 75(2):424-434. DOI: 10.1016/j.jhep.2021.03.013.  
											 											 | 
										
																													
																						| [12] | 
																						 
											 
											 											 | 
										
																													
																						| [13] | 
																						 
											 
											 											 | 
										
																													
																						| [14] | 
																						 
											 JIN H M,  FENG Y Q,  GUO K B,et al. Prognostic nomograms for predicting overall survival and cancer-specific survival of patients with early onset colon adenocarcinoma[J].  Front Oncol, 2020, 10:595354. DOI: 10.3389/fonc.2020.595354.  
											 											 | 
										
																													
																						| [15] | 
																						 
											 ZHAO B,  GABRIEL R A,  VAIDA F,et al. Using machine learning to construct nomograms for patients with metastatic colon cancer[J].  Colorectal Dis, 2020, 22(8):914-922. DOI: 10.1111/codi.14991.  
											 											 | 
										
																													
																						| [16] | 
																						 
											 XI C F,  WANG C M,  RONG G H,et al. A nomogram model that predicts the risk of diabetic nephropathy in type 2 diabetes mellitus patients:a retrospective study[J].  Int J Endocrinol, 2021, 2021:6672444. DOI: 10.1155/2021/6672444.  
											 											 | 
										
																													
																						| [17] | 
																						 
											 SHI R,  NIU Z Y,  WU B R,et al. Nomogram for the risk of diabetic nephropathy or diabetic retinopathy among patients with type 2 diabetes mellitus based on questionnaire and biochemical indicators:a cross-sectional study[J].  Diabetes Metab Syndr Obes, 2020, 13:1215-1229. DOI: 10.2147/DMSO.S244061.  
											 											 | 
										
																													
																						| [18] | 
																						 
											 
											 											 | 
										
																													
																						| [19] | 
																						 
											 HUI D N,  ZHANG F,  LU Y Y,et al. A multifactorial risk score system for the prediction of diabetic kidney disease in patients with type 2 diabetes mellitus[J].  Diabetes Metab Syndr Obes, 2023, 16:385-395. DOI: 10.2147/DMSO.S391781.  
											 											 | 
										
																													
																						| [20] | 
																						 
											 JIANG S M,  FANG J Y,  YU T Y,et al. Novel model predicts diabetic nephropathy in type 2 diabetes[J].  Am J Nephrol, 2020, 51(2):130-138. DOI: 10.1159/000505145.  
											 											 | 
										
																													
																						| [21] | 
																						 
											 ADLER A I,  STEVENS R J,  MANLEY S E,et al. Development and progression of nephropathy in type 2 diabetes:the United Kingdom Prospective Diabetes Study (UKPDS 64)[J].  Kidney Int, 2003, 63(1):225-232. DOI: 10.1046/j.1523-1755.2003.00712.x.  
											 											 | 
										
																													
																						| [22] | 
																						 
											 BASHIR M,  ELHADD T,  DABBOUS Z,et al. Optimal glycaemic and blood pressure but not lipid targets are related to a lower prevalence of diabetic microvascular complications[J].  Diabetes Metab Syndr, 2021, 15(5):102241. DOI: 10.1016/j.dsx.2021.102241.  
											 											 | 
										
																													
																						| [23] | 
																						 
											 
											 											 | 
										
																													
																						| [24] | 
																						 
											 
											 											 | 
										
																													
																						| [25] | 
																						 
											  彭方书,赵晓溪,吕燕,等. 2型糖尿病合并高血压患者动态血糖与昼夜动态血压波动的关系[J]. 中国医药导报,2020,17(26):113-116. 
											 											 | 
										
																													
																						| [26] | 
																						 
											 
											 											 | 
										
																													
																						| [27] | 
																						 
											 
											 											 | 
										
																													
																						| [28] | 
																						 
											 
											 											 | 
										
																													
																						| [29] | 
																						 
											 
											 											 | 
										
																													
																						| [30] | 
																						 
											 
											 											 | 
										
																													
																						| [31] | 
																						 
											 CHENG Y Q,  SHANG J,  LIU D,et al. Development and validation of a predictive model for the progression of diabetic kidney disease to kidney failure[J].  Ren Fail, 2020, 42(1):550-559. DOI: 10.1080/0886022X.2020.1772294.  
											 											 | 
										
																													
																						| [32] | 
																						 
											  崔颖,贺建勋,林红军. 血尿酸、血肌酐水平对糖尿病肾病患者预后判断的价值[J]. 中国社区医师,2021,37(34):95-96. 
											 											 | 
										
																													
																						| [33] | 
																						 
											 
											 											 |