| [1] |
RIAZI K, AZHARI H, CHARETTE J H, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2022, 7(9): 851-861. DOI: 10.1016/S2468-1253(22)00165-0.
|
| [2] |
KUMAR V, XIN X F, MA J Y, et al. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 176: 113888. DOI: 10.1016/j.addr.2021.113888.
|
| [3] |
STEFAN N, CUSI K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes[J]. Lancet Diabetes Endocrinol, 2022, 10(4): 284-296. DOI: 10.1016/S2213-8587(22)00003-1.
|
| [4] |
CAO L M, AN Y, LIU H Y, et al. Global epidemiology of type 2 diabetes in patients with NAFLD or MAFLD: a systematic review and meta-analysis[J]. BMC Med, 2024, 22(1): 101. DOI: 10.1186/s12916-024-03315-0.
|
| [5] |
SEO I H, LEE H S, LEE Y J. Fatty liver index as a predictor for incident type 2 diabetes in community-dwelling adults: longitudinal findings over 12 years[J]. Cardiovasc Diabetol, 2022, 21(1): 209. DOI: 10.1186/s12933-022-01642-1.
|
| [6] |
PARK K Y, PARK J H, HAN K, et al. Fatty liver change in older adults as an important risk factor for type 2 diabetes: a nationwide cohort study[J]. Mayo Clin Proc, 2023, 98(12): 1809-1819. DOI: 10.1016/j.mayocp.2023.02.033.
|
| [7] |
YANG J D, AHMED F, MARA K C, et al. Diabetes is associated with increased risk of hepatocellular carcinoma in patients with cirrhosis from nonalcoholic fatty liver disease[J]. Hepatology, 2020, 71(3): 907-916. DOI: 10.1002/hep.30858.
|
| [8] |
GENG Y N, FABER K N, DE MEIJER V E, et al. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?[J]. Hepatol Int, 2021, 15(1): 21-35. DOI: 10.1007/s12072-020-10121-2.
|
| [9] |
MEEX R C R, WATT M J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance[J]. Nat Rev Endocrinol, 2017, 13(9): 509-520. DOI: 10.1038/nrendo.2017.56.
|
| [10] |
STERN J H, RUTKOWSKI J M, SCHERER P E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk[J]. Cell Metab, 2016, 23(5): 770-784. DOI: 10.1016/j.cmet.2016.04.011.
|
| [11] |
LEE W H, NAJJAR S M, KAHN C R, et al. Hepatic insulin receptor: new views on the mechanisms of liver disease[J]. Metabolism, 2023, 145: 155607. DOI: 10.1016/j.metabol.2023.155607.
|
| [12] |
WAN Y J, HU Z X, LIU Q H, et al. Liver fibrosis alters the molecular structures of hepatic glycogen[J]. Carbohydr Polym, 2022, 278: 118991. DOI: 10.1016/j.carbpol.2021.118991.
|
| [13] |
BOURSIER J, ANTY R, CARETTE C, et al. Management of diabetes mellitus in patients with cirrhosis: an overview and joint statement[J]. Diabetes Metab, 2021, 47(5): 101272. DOI: 10.1016/j.diabet.2021.101272.
|
| [14] |
KIM K S, HONG S M, HAN K, et al. Association of non-alcoholic fatty liver disease with cardiovascular disease and all cause death in patients with type 2 diabetes mellitus: nationwide population based study[J]. BMJ, 2024, 384: e076388. DOI: 10.1136/bmj-2023-076388.
|
| [15] |
PARK J, KIM G, KIM B S, et al. The association between changes in hepatic steatosis and hepatic fibrosis with cardiovascular outcomes and mortality in patients with New-Onset type 2 Diabetes: a nationwide cohort study[J]. Diabetes Res Clin Pract, 2022, 194: 110191. DOI: 10.1016/j.diabres.2022.110191.
|
| [16] |
DUAN W F, SHI R X, YANG F, et al. FSTL3 partially mediates the association of increased nonalcoholic fatty liver disease fibrosis risk with acute myocardial infarction in patients with type 2 diabetes mellitus[J]. Cardiovasc Diabetol, 2023, 22(1): 297. DOI: 10.1186/s12933-023-02024-x.
|
| [17] |
LOMBARDI R, AIRAGHI L, TARGHER G, et al. Liver fibrosis by FibroScan® independently of established cardiovascular risk parameters associates with macrovascular and microvascular complications in patients with type 2 diabetes[J]. Liver Int, 2020, 40(2): 347-354. DOI: 10.1111/liv.14274.
|
| [18] |
MIKOLASEVIC I, RAHELIC D, TURK-WENSWEEN T, et al. Significant liver fibrosis, as assessed by fibroscan, is independently associated with chronic vascular complications of type 2 diabetes: a multicenter study[J]. Diabetes Res Clin Pract, 2021, 177: 108884. DOI: 10.1016/j.diabres.2021.108884.
|
| [19] |
CARDOSO C R L, VILLELA-NOGUEIRA C A, LEITE N C, et al. Prognostic impact of liver fibrosis and steatosis by transient elastography for cardiovascular and mortality outcomes in individuals with nonalcoholic fatty liver disease and type 2 diabetes: the Rio de Janeiro Cohort Study[J]. Cardiovasc Diabetol, 2021, 20(1): 193. DOI: 10.1186/s12933-021-01388-2.
|
| [20] |
YE J Z, ZHUANG X D, LI X, et al. Novel metabolic classification for extrahepatic complication of metabolic associated fatty liver disease: a data-driven cluster analysis with international validation[J]. Metabolism, 2022, 136: 155294. DOI: 10.1016/j.metabol.2022.155294.
|
| [21] |
HILL M A, YANG Y, ZHANG L P, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease[J]. Metabolism, 2021, 119: 154766. DOI: 10.1016/j.metabol.2021.154766.
|
| [22] |
CASTILLO-NÚÑEZ Y, ALMEDA-VALDES P, GONZÁLEZ-GÁLVEZ G, et al. Metabolic dysfunction-associated steatotic liver disease and atherosclerosis[J]. Curr Diab Rep, 2024, 24(7): 158-166. DOI: 10.1007/s11892-024-01542-6.VALENTIL,
|
| [23] |
TRIPODI A, MURA V L, et al. Clinical and genetic determinants of the fatty liver-coagulation balance interplay in individuals with metabolic dysfunction[J]. JHEP Rep, 2022, 4(12): 100598. DOI: 10.1016/j.jhepr.2022.100598.
|
| [24] |
BOCCATONDA A, DEL CANE L, MAROLA L, et al. Platelet, antiplatelet therapy and metabolic dysfunction-associated steatotic liver disease: a narrative review[J]. Life, 2024, 14(4): 473. DOI: 10.3390/life14040473.
|
| [25] |
DOKMAK A, ALMEQDADI M, TRIVEDI H, et al. Rise of sodium-glucose cotransporter 2 inhibitors in the management of nonalcoholic fatty liver disease[J]. World J Hepatol, 2019, 11(7): 562-573. DOI: 10.4254/wjh.v11.i7.562.
|
| [26] |
|
| [27] |
EZHILARASAN D. Deciphering the molecular pathways of saroglitazar: a dual PPAR α/γ agonist for managing metabolic NAFLD[J]. Metabolism, 2024, 155: 155912. DOI: 10.1016/j.metabol.2024.155912.
|
| [28] |
RATZIU V, FRANCQUE S, BEHLING C A, et al. Artificial intelligence scoring of liver biopsies in a phase II trial of semaglutide in nonalcoholic steatohepatitis[J]. Hepatology, 2024, 80(1): 173-185. DOI: 10.1097/HEP.0000000000000723.
|
| [29] |
MOON J S, HONG J H, JUNG Y J, et al. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease[J]. Trends Endocrinol Metab, 2022, 33(6): 424-442. DOI: 10.1016/j.tem.2022.03.005.
|
| [30] |
LOOMBA R, HARTMAN M L, LAWITZ E J, et al. Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis[J]. N Engl J Med, 2024, 391(4): 299-310. DOI: 10.1056/NEJMoa2401943.
|
| [31] |
SAMMS R J, COGHLAN M P, SLOOP K W. How may GIP enhance the therapeutic efficacy of GLP-1?[J]. Trends Endocrinol Metab, 2020, 31(6): 410-421. DOI: 10.1016/j.tem.2020.02.006.
|
| [32] |
SHEN Y F, CHENG L D, XU M X, et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis[J]. Metabolism, 2023, 146: 155657. DOI: 10.1016/j.metabol.2023.155657.
|