中国全科医学 ›› 2022, Vol. 25 ›› Issue (09): 1141-1147.DOI: 10.12114/j.issn.1007-9572.2021.02.135
曾霖1, 张鹏翔1, 黄倩1, 王高祥2, 李惠林3,*
收稿日期:
2021-11-11
修回日期:
2021-12-20
出版日期:
2022-03-20
发布日期:
2022-03-01
通讯作者:
李惠林
基金资助:
Research Progress of the Prevention and Treatment of Metabolic Diseases Based on Short Chain Fatty Acids
ZENG Lin1,ZHANG Pengxiang1,HUANG Qian1,WANG Gaoxiang2,LI Huilin3*
1.The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine,Shenzhen 518033,China
2.Nanjing University of Chinese Medicine,Nanjing 210023,China
3.Shenzhen Traditional Chinese Medicine Hospital,Shenzhen 518033,China
*Corresponding author:LI Huilin,Professor,Doctoral supervisor;E-mail:sztcmlhl@163.com
Received:
2021-11-11
Revised:
2021-12-20
Published:
2022-03-20
Online:
2022-03-01
摘要: 短链脂肪酸(SCFAs)是一类含有1~6个碳原子的饱和脂肪酸,主要由肠道内特定菌群通过发酵膳食纤维产生,对维持肠道内环境稳态发挥重要作用。近年来研究表明SCFAs可调节糖脂代谢、调节能量平衡、维持肠道屏障、减轻炎性反应,并通过上述多途径参与2型糖尿病、肥胖、脂代谢紊乱、非酒精性脂肪性肝病等代谢性疾病的发生与发展。本文总结了SCFAs调控代谢的机制及其防治代谢性疾病的研究进展,旨在为代谢性疾病的防治提供更多参考资料。
中图分类号:
ZENG Lin, ZHANG Pengxiang, HUANG Qian, WANG Gaoxiang, LI Huilin.
Research Progress of the Prevention and Treatment of Metabolic Diseases Based on Short Chain Fatty Acids [J]. Chinese General Practice, 2022, 25(09): 1141-1147.
[1] | KIMURA I,ICHIMURA A,OHUE-KITANO R,et al. Free fatty acid receptors in health and disease[J]. Physiol Rev,2020,100(1):171-210. DOI:10.1152/physrev.00041.2018. |
[2] | KOH A,DE VADDER F,KOVATCHEVA-DATCHARY P,et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332-1345. DOI:10.1016/j.cell.2016.05.041. |
[3] | STUMPFF F. A look at the smelly side of physiology:transport of short chain fatty acids[J]. Pflugers Arch,2018,470(4):571-598. DOI:10.1007/s00424-017-2105-9. |
[4] | SIVAPRAKASAM S,BHUTIA Y D,YANG S,et al. Short-chain fatty acid transporters:role in colonic homeostasis[J]. Compr Physiol,2017,8(1):299-314. DOI:10.1002/cphy.c170014. |
[5] | PSICHAS A,SLEETH M L,MURPHY K G,et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents[J]. Int J Obes:Lond,2015,39(3):424-429. DOI:10.1038/ijo.2014.153. |
[6] | NARAOKA Y,YAMAGUCHI T,HU A,et al. Short chain fatty acids upregulate adipokine production in type 2 diabetes-derived human adipocytes[J]. Acta Endocrinol (Buchar),2018,14(3):287-293. DOI:10.4183/aeb.2018.287. |
[7] | LI Z,YI C X,KATIRAEI S,et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit[J]. Gut,2018,67(7):1269-1279. DOI:10.1136/gutjnl-2017-314050. |
[8] | FROST G,SLEETH M L,SAHURI-ARISOYLU M,et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J]. Nat Commun,2014,5:3611. DOI:10.1038/ncomms4611. |
[9] | PERRY R J,PENG L,BARRY N A,et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature,2016,534(7606):213-217. DOI:10.1038/nature18309. |
[10] | KIMURA I,OZAWA K,INOUE D,et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J]. Nat Commun,2013,4:1829. DOI:10.1038/ncomms2852. |
[11] | LU Y Y,FAN C N,LI P,et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota[J]. Sci Rep,2016,6:37589. DOI:10.1038/srep37589. |
[12] | SAMBEAT A,GULYAEVA O,DEMPERSMIER J,et al. LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program[J]. Cell Rep,2016,15(11):2536-2549. DOI:10.1016/j.celrep.2016.05.019. |
[13] | WANG D,LIU C D,LI H F,et al. LSD1 mediates microbial metabolite butyrate-induced thermogenesis in brown and white adipose tissue[J]. Metabolism,2020,102:154011. DOI:10.1016/j.metabol.2019.154011. |
[14] | BO T B,ZHANG X Y,WEN J,et al. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii)[J]. Isme J,2019,13(12):3037-3053. DOI:10.1038/s41396-019-0492-y. |
[15] | KHAKISAHNEH S,ZHANG X Y,NOURI Z,et al. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations[J]. mSystems,2020,5(5):e514-520. DOI:10.1128/mSystems.00514-20. |
[16] | DE GOFFAU M C,LUOPAJÄRVI K,KNIP M,et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without[J]. Diabetes,2013,62(4):1238-1244. DOI:10.2337/db12-0526. |
[17] | LI H P,CHEN X,LI M Q. Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity[J]. Int J Clin Exp Pathol,2013,6(8):1574-1584. |
[18] | LUNDH M,GALBO T,POULSEN S S,et al. Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats[J]. Diabetes Obes Metab,2015,17(7):703-707. DOI:10.1111/dom.12470. |
[19] | YAMATO E. High dose of histone deacetylase inhibitors affects insulin secretory mechanism of pancreatic beta cell line[J]. Endocr Regul,2018,52(1):21-26. DOI:10.2478/enr-2018-0004. |
[20] | KHAN S,JENA G B. Protective role of sodium butyrate,a HDAC inhibitor on beta-cell proliferation,function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways:study in juvenile diabetic rat[J]. Chem Biol Interact,2014,213:1-12. DOI:10.1016/j.cbi.2014.02.001. |
[21] | ELGAMAL D A,ABOU-ELGHAIT A T,ALI A Y,et al. Ultrastructure characterization of pancreatic β-cells is accompanied by modulatory effects of the HDAC inhibitor sodium butyrate on the PI3/AKT insulin signaling pathway in juvenile diabetic rats[J]. Mol Cell Endocrinol,2020,503:110700. DOI:10.1016/j.mce.2019.110700. |
[22] | GUO Y,XIAO Z,WANG Y N,et al. Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression[J]. Front Endocrinol (Lausanne),2018,9:630. DOI:10.3389/fendo.2018.00630. |
[23] | DEN BESTEN G,BLEEKER A,GERDING A,et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes,2015,64(7):2398-2408. DOI:10.2337/db14-1213. |
[24] | MOLLICA M P,MATTACE RASO G,CAVALIERE G,et al. Butyrate regulates liver mitochondrial function,efficiency,and dynamics in insulin-resistant obese mice[J]. Diabetes,2017,66(5):1405-1418. DOI:10.2337/db16-0924. |
[25] | TIROSH A,CALAY E S,TUNCMAN G,et al. The short-chain fatty acid propionate increases glucagon and FABP4 production,impairing insulin action in mice and humans[J]. Sci Transl Med,2019,11(489):eaav0120. DOI:10.1126/scitranslmed.aav0120. |
[26] | DE VADDER F,KOVATCHEVA-DATCHARY P,ZITOUN C,et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J]. Cell Metab,2016,24(1):151-157. DOI:10.1016/j.cmet.2016.06.013. |
[27] | DE VADDER F,KOVATCHEVA-DATCHARY P,GONCALVES D,et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell,2014,156(1/2):84-96. DOI:10.1016/j.cell.2013.12.016. |
[28] | LU Y Y,FAN C N,LI P,et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota[J]. Sci Rep,2016,6:37589. DOI:10.1038/srep37589. |
[29] | LI Z,YI C X,KATIRAEI S,et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit[J]. Gut,2018,67(7):1269-1279. DOI:10.1136/gutjnl-2017-314050. |
[30] | VOZZA A,PARISI G,DE LEONARDIS F,et al. UCP2 transports C4 metabolites out of mitochondria,regulating glucose and glutamine oxidation[J]. Proc Natl Acad Sci USA,2014,111(3):960-965. DOI:10.1073/pnas.1317400111. |
[31] | GAO Z G,YIN J,ZHANG J,et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes,2009,58(7):1509-1517. DOI:10.2337/db08-1637. |
[32] | HENAGAN T M,STEFANSKA B,FANG Z D,et al. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation,obesity and insulin resistance through nucleosome positioning[J]. Br J Pharmacol,2015,172(11):2782-2798. DOI:10.1111/bph.13058. |
[33] | ARAÚJO J R,TAZI A,BURLEN-DEFRANOUX O,et al. Fermentation products of commensal bacteria alter enterocyte lipid metabolism[J]. Cell Host Microbe,2020,27(3):358-375.e7. DOI:10.1016/j.chom.2020.01.028. |
[34] | GUI H B,SHEN Z M. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats[J]. J Dairy Sci,2016,99(8):6627-6638. DOI:10.3168/jds.2015-10446. |
[35] | ZHAO J B,LIU P,WU Y,et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets[J]. J Agric Food Chem,2018,66(30):7995-8004. DOI:10.1021/acs.jafc.8b02545. |
[36] | FENG Y H,WANG Y,WANG P,et al. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy[J]. Cell Physiol Biochem,2018,49(1):190-205. DOI:10.1159/000492853. |
[37] | FACHI J L,SÉCCA C,RODRIGUES P B,et al. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2[J]. J Exp Med,2020,217(3):e20190489. DOI:10.1084/jem.20190489. |
[38] | DUSCHA A,GISEVIUS B,HIRSCHBERG S,et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism[J]. Cell,2020,180(6):1067-1080.e16. DOI:10.1016/j.cell.2020.02.035. |
[39] | RAU M,REHMAN A,DITTRICH M,et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease[J]. United European Gastroenterol J,2018,6(10):1496-1507. DOI:10.1177/2050640618804444. |
[40] | KELLY C J,ZHENG L,CAMPBELL E L,et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host Microbe,2015,17(5):662-671. DOI:10.1016/j.chom.2015.03.005. |
[41] | FORSLUND K,HILDEBRAND F,NIELSEN T,et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature,2015,528(7581):262-266. DOI:10.1038/nature15766. |
[42] | WU H,ESTEVE E,TREMAROLI V,et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes,contributing to the therapeutic effects of the drug[J]. Nat Med,2017,23(7):850-858. DOI:10.1038/nm.4345. |
[43] | DE LA CUESTA-ZULUAGA J,MUELLER N T,CORRALES-AGUDELO V,et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut[J]. Diabetes Care,2017,40(1):54-62. DOI:10.2337/dc16-1324. |
[44] | BRUNKWALL L,ORHO-MELANDER M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes:from current human evidence to future possibilities[J]. Diabetologia,2017,60(6):943-951. DOI:10.1007/s00125-017-4278-3. |
[45] | ZHANG X,FANG Z,ZHANG C,et al. Effects of acarbose on the gut microbiota of prediabetic patients:a randomized,double-blind,controlled crossover trial[J]. Diabetes Ther,2017,8(2):293-307. DOI:10.1007/s13300-017-0226-y. |
[46] | YAN X F,FENG B,LI P C,et al. Microflora disturbance during progression of glucose intolerance and effect of sitagliptin:an animal study[J]. J Diabetes Res,2016,2016:2093171. DOI:10.1155/2016/2093171. |
[47] | WANG L,LI P,TANG Z,et al. Structural modulation of the gut microbiota and the relationship with body weight:compared evaluation of liraglutide and saxagliptin treatment[J]. Sci Rep,2016,6:33251. DOI:10.1038/srep33251. |
[48] | LIAO X Y,SONG L Y,ZENG B H,et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis[J]. EBioMedicine,2019,44:665-674. DOI:10.1016/j.ebiom.2019.03.057. |
[49] | JAYACHANDRAN M,CHEN J L,CHUNG S S M,et al. A critical review on the impacts of β-glucans on gut microbiota and human health[J]. J Nutr Biochem,2018,61:101-110. DOI:10.1016/j.jnutbio.2018.06.010. |
[50] | ZHANG C,MA S,WU J,et al. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action:The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin[J]. Pharmacol Res,2020,159:104985. DOI:10.1016/j.phrs.2020.104985. |
[51] | LIU G,LIANG L,YU G,et al. Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats[J]. Int J Biol Macromol,2018,115:711-717. DOI:10.1016/j.ijbiomac.2018.04.127. |
[52] | NIE Q,CHEN H,HU J,et al. Arabinoxylan attenuates type 2 diabetes by improvement of carbohydrate,lipid,and amino acid metabolism[J]. Mol Nutr Food Res,2018,62(20):e1800222. DOI:10.1002/mnfr.201800222. |
[53] | ZHAO C,YANG C F,LIU B,et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits[J]. Trends Food Sci Technol,2018,72:1-12. DOI:10.1016/j.tifs.2017.12.001. |
[54] | LIU Y Y,WANG C R,LI J S,et al. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition[J]. FASEB J,2020,34(1):1065-1078. DOI:10.1096/fj.201901943RR. |
[55] | LIU Y M,LIU W,LI J,et al. A polysaccharide extracted from Astragalus membranaceus residue improves cognitive dysfunction by altering gut microbiota in diabetic mice[J]. Carbohydr Polym,2019,205:500-512. DOI:10.1016/j.carbpol.2018.10.041. |
[56] | YAO Y,YAN L,CHEN H,et al. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids[J]. Phytomedicine,2020,77:153268. DOI:10.1016/j.phymed.2020.153268. |
[57] | GU W,WANG Y,ZENG L,et al. Polysaccharides from Polygonatum kingianum improve glucose and lipid metabolism in rats fed a high fat diet[J]. Biomed Pharmacother,2020,125:109910. DOI:10.1016/j.biopha.2020.109910. |
[58] | ZHU K X,FAN H F,ZENG S J,et al. Polysaccharide from Artocarpus heterophyllus Lam.(jackfruit) pulp modulates gut microbiota composition and improves short-chain fatty acids production[J]. Food Chem,2021,364:130434. DOI:10.1016/j.foodchem.2021.130434. |
[59] | PANG B,ZHAO L H,ZHOU Q,et al. Application of berberine on treating type 2 diabetes mellitus[J]. Int J Endocrinol,2015,2015:905749. DOI:10.1155/2015/905749. |
[60] | CUI H X,ZHANG L S,LUO Y,et al. A purified anthraquinone-glycoside preparation from rhubarb ameliorates type 2 diabetes mellitus by modulating the gut microbiota and reducing inflammation[J]. Front Microbiol,2019,10:1423. DOI:10.3389/fmicb.2019.01423. |
[61] | XU X,GAO Z,YANG F,et al. Antidiabetic effects of Gegen Qinlian decoction via the gut microbiota are attributable to its key ingredient berberine[J]. Genomics Proteomics Bioinformatics,2020,18(6):721-736. DOI:10.1016/j.gpb.2019.09.007. |
[62] | XIAO S,LIU C,CHEN M,et al. Scutellariae Radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites[J]. Appl Microbiol Biotechnol,2020,104(1):303-317. DOI:10.1007/s00253-019-10174-w. |
[63] | TONG X L,XU J,LIAN F M,et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula:a multicenter,randomized,open label clinical trial[J]. mBio,2018,9(3):e2392-2317. DOI:10.1128/mBio.02392-17. |
[64] | CHEN M Y,LIAO Z Q,LU B Y,et al. Huang-Lian-Jie-du-decoction ameliorates hyperglycemia and insulin resistant in association with gut microbiota modulation[J]. Front Microbiol,2018,9:2380. DOI:10.3389/fmicb.2018.02380. |
[65] | WEI X Y,TAO J H,XIAO S W,et al. Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota[J]. Sci Rep,2018,8(1):3685. DOI:10.1038/s41598-018-22094-2. |
[66] | CAO Y,YAO G W,SHENG Y Y,et al. JinQi Jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice[J]. J Diabetes Res,2019,2019:1872134. DOI:10.1155/2019/1872134. |
[67] | LIU Y,WANG Y,NI Y Q,et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention[J]. Cell Metab,2020,31(1):77-91.e5. DOI:10.1016/j.cmet.2019.11.001. |
[68] | LE CHATELIER E,NIELSEN T,QIN J J,et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature,2013,500(7464):541-546. DOI:10.1038/nature12506. |
[69] | STANISLAWSKI M A,DABELEA D,LANGE L A,et al. Gut microbiota phenotypes of obesity[J]. NPJ Biofilms Microbiomes,2019,5(1):18. DOI:10.1038/s41522-019-0091-8. |
[70] | MUELLER N T,DIFFERDING M K,ZHANG M,et al. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids:a randomized trial[J]. Diabetes Care,2021,44(7):1462-1471. DOI:10.2337/dc20-2257. |
[71] | HENNING S M,YANG J P,HSU M,et al. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice[J]. Eur J Nutr,2018,57(8):2759-2769. DOI:10.1007/s00394-017-1542-8. |
[72] | SANG T T,GUO C J,GUO D D,et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation[J]. Carbohydr Polym,2021,256:117594. DOI:10.1016/j.carbpol.2020.117594. |
[73] | WANG K,BAO L,ZHOU N,et al. Structural modification of natural product ganomycin I leading to discovery of a α-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction in vivo[J]. J Med Chem,2018,61(8):3609-3625. DOI:10.1021/acs.jmedchem.8b00107. |
[74] | WANG L,ZENG B H,LIU Z W,et al. Green tea polyphenols modulate colonic microbiota diversity and lipid metabolism in high-fat diet treated HFA mice[J]. J Food Sci,2018,83(3):864-873. DOI:10.1111/1750-3841.14058. |
[75] | DING Y N,SONG Z H,LI H,et al. Honokiol ameliorates high-fat-diet-induced obesity of different sexes of mice by modulating the composition of the gut microbiota[J]. Front Immunol,2019,10:2800. DOI:10.3389/fimmu.2019.02800. |
[76] | LU Y Y,FAN C N,LI P,et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota[J]. Sci Rep,2016,6:37589. DOI:10.1038/srep37589. |
[77] | ZHANG S M,ZHAO J W,XIE F,et al. Dietary fiber-derived short-chain fatty acids:a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease[J]. Obes Rev,2021,22(11):e13316. DOI:10.1111/obr.13316. |
[78] | HONG Y,SHENG L L,ZHONG J,et al. Desulfovibrio vulgaris,a potent acetic acid-producing bacterium,attenuates nonalcoholic fatty liver disease in mice[J]. Gut Microbes,2021,13(1):1-20. DOI:10.1080/19490976.2021.1930874. |
[79] | QIAO S S,BAO L,WANG K,et al. Activation of a specific gut Bacteroides-folate-liver axis benefits for the alleviation of nonalcoholic hepatic steatosis[J]. Cell Rep,2020,32(6):108005. DOI:10.1016/j.celrep.2020.108005. |
[1] | 王婷婷, 唐勇, 张文轲, 李志刚. 高尿酸血症运动干预的研究进展[J]. 中国全科医学, 2025, 28(30): 3841-3846. |
[2] | 周晟, 邓长生, 邹冠炀, 宋健平. 疟疾心血管疾病并发症发病机制的研究进展[J]. 中国全科医学, 2025, 28(27): 3466-3472. |
[3] | 张宇诺, 李瑞斌, 王玮. 血清Nesfatin-1和Ghrelin水平与糖脂代谢及2型糖尿病的关系研究[J]. 中国全科医学, 2025, 28(26): 3264-3270. |
[4] | 黄雨琳, 王浩云, 李燕梅, 萧雪英. 胃癌患者化疗期间症状群的范围综述[J]. 中国全科医学, 2025, 28(26): 3338-3344. |
[5] | 刘银银, 隋鸿平, 李婷婷, 姜桐桐, 史铁英, 夏云龙. 乳腺癌治疗相关心脏毒性风险预测模型的研究进展[J]. 中国全科医学, 2025, 28(24): 3072-3078. |
[6] | 李苗秀, 朱博文, 孔令军, 房敏. 青少年脊柱侧弯保守治疗临床评估工具研究进展[J]. 中国全科医学, 2025, 28(24): 3079-3088. |
[7] | 肖瑶, 万钧. 直接口服抗凝药在静脉血栓栓塞特殊人群中的临床应用[J]. 中国全科医学, 2025, 28(24): 3066-3071. |
[8] | 阮万百, 李俊峰, 尹艳梅, 彭磊, 朱克祥. 胰腺癌靶向治疗及免疫治疗的研究新进展[J]. 中国全科医学, 2025, 28(23): 2950-2960. |
[9] | 周连鹏, 李伟峰, 董新刚, 王晓元. 铜稳态调节机制在认知障碍中的作用探析[J]. 中国全科医学, 2025, 28(23): 2941-2949. |
[10] | 王鹏, 仇丽霞, 许姗姗, 张洋, 张晶, 杜晓菲. 代谢相关脂肪性肝病与2型糖尿病共同管理研究进展[J]. 中国全科医学, 2025, 28(23): 2846-2851. |
[11] | 董浩铖, 郝潇, 安东, 李浩翰, 李树仁. 射血分数超常的心力衰竭的研究进展[J]. 中国全科医学, 2025, 28(21): 2692-2696. |
[12] | 杜琼靓, 林白浪, 郭洪花. 群组育儿保健模式的研究进展及启示[J]. 中国全科医学, 2025, 28(21): 2672-2678. |
[13] | 褚田雨, 顾艳. 颈动脉钙化特征在评估斑块稳定性及临床事件中的作用[J]. 中国全科医学, 2025, 28(18): 2247-2252. |
[14] | 朱子一, 何贵新, 秦伟彬, 宋惠, 张利文, 唐伟智, 杨斐斐, 刘凌云, 欧阳彬. 线粒体自噬改善心肌梗死后心肌纤维化及其中医药干预的研究进展[J]. 中国全科医学, 2025, 28(18): 2294-2300. |
[15] | 谭文彬, 李佳, 刘明玉, 路永欣, 程雅欣. 神经系统疾病及相关治疗药物对骨质疏松症影响的研究进展[J]. 中国全科医学, 2025, 28(17): 2092-2100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||