[1] |
KHADOUR F A, KHADOUR Y A, LING M,et al. Epidemiological features of traumatic spinal cord injury in Wuhan,China[J]. J Orthop Surg Res, 2023, 18(1):72. DOI: 10.1186/s13018-023-03554-6.
|
[2] |
PETERSON A B, ZHOU H, THOMAS K E. Disparities in traumatic brain injury-related deaths-United States,2020[J]. J Safety Res, 2022, 83:419-426. DOI: 10.1016/j.jsr.2022.10.001.
|
[3] |
MUKAI T, SEI K, NAGAMURA-INOUE T. Mesenchymal stromal cells:cell-based therapies for traumatic central nervous system injuries[J]. J Integr Neurosci, 2022, 21(2):44. DOI: 10.31083/j.jin2102044.
|
[4] |
SEBASTIÁN DOMINGO J J, SÁNCHEZ SÁNCHEZ C. From the intestinal flora to the microbiome[J]. Rev Esp Enferm Dig, 2018, 110(1):51-56. DOI: 10.17235/reed.2017.4947/2017.
|
[5] |
BESECKER E M, DEITER G M, PIRONI N,et al. Mesenteric vascular dysregulation and intestinal inflammation accompanies experimental spinal cord injury[J]. Am J Physiol Regul Integr Comp Physiol, 2017, 312(1):R146-156. DOI: 10.1152/ajpregu.00347.2016.
|
[6] |
LIU X H, LIANG F, ZHANG J,et al. Hyperbaric oxygen treatment improves intestinal barrier function after spinal cord injury in rats[J]. Front Neurol, 2020, 11:563281. DOI: 10.3389/fneur.2020.563281.
|
[7] |
HUANG Z Z, WENG Y, SHEN Q C,et al. Microplastic:a potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment[J]. Sci Total Environ, 2021, 785:147365. DOI: 10.1016/j.scitotenv.2021.147365.
|
[8] |
MÖRKL S, BUTLER M I, HOLL A,et al. Probiotics and the microbiota-gut-brain axis:focus on psychiatry[J]. Curr Nutr Rep, 2020, 9(3):171-182. DOI: 10.1007/s13668-020-00313-5.
|
[9] |
WU J M, WANG J P, LIN Z S,et al. Clostridium butyricum alleviates weaned stress of piglets by improving intestinal immune function and gut microbiota[J]. Food Chem, 2023, 405(Pt B):135014. DOI: 10.1016/j.foodchem.2022.135014.
|
[10] |
JING Y L, YU Y, BAI F,et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model:involvement of brain-gut axis[J]. Microbiome, 2021, 9(1):59. DOI: 10.1186/s40168-021-01007-y.
|
[11] |
BANNERMAN C A, DOUCHANT K, SEGAL J P,et al. Spinal cord injury in mice affects central and peripheral pathology in a severity-dependent manner[J]. Pain, 2022, 163(6):1172-1185. DOI: 10.1097/j.pain.0000000000002471.
|
[12] |
SKOLNICK S D, GREIG N H. Microbes and monoamines:potential neuropsychiatric consequences of dysbiosis[J]. Trends Neurosci, 2019, 42(3):151-163. DOI: 10.1016/j.tins.2018.12.005.
|
[13] |
BAZZOCCHI G, TURRONI S, BULZAMINI M C,et al. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion[J]. Sci Rep, 2021, 11(1):12743. DOI: 10.1038/s41598-021-92027-z.
|
[14] |
KONG G G, ZHANG W W, ZHANG S Y,et al. The gut microbiota and metabolite profiles are altered in patients with spinal cord injury[J]. Mol Brain, 2023, 16(1):26. DOI: 10.1186/s13041-023-01014-0.
|
[15] |
PANG R Z, WANG J Y, XIONG Y S,et al. Relationship between gut microbiota and lymphocyte subsets in Chinese Han patients with spinal cord injury[J]. Front Microbiol, 2022, 13:986480. DOI: 10.3389/fmicb.2022.986480.
|
[16] |
MAHAJAN C, KHURANA S, KAPOOR I,et al. Characteristics of gut microbiome after traumatic brain injury[J]. J Neurosurg Anesthesiol, 2023, 35(1):86-90. DOI: 10.1097/ANA.0000000000000789.
|
[17] |
KANG J N, SUN Z F, LI X Y,et al. Alterations in gut microbiota are related to metabolite profiles in spinal cord injury[J]. Neural Regen Res, 2023, 18(5):1076-1083. DOI: 10.4103/1673-5374.355769.
|
[18] |
YANG W J, YUAN Q, LI Z Q,et al. Translocation and dissemination of gut bacteria after severe traumatic brain injury[J]. Microorganisms, 2022, 10(10):2082. DOI: 10.3390/microorganisms10102082.
|
[19] |
ZHENG Z P, WANG S, WU C H,et al. Gut microbiota dysbiosis after traumatic brain injury contributes to persistent microglial activation associated with upregulated Lyz2 and shifted tryptophan metabolic phenotype[J]. Nutrients, 2022, 14(17):3467. DOI: 10.3390/nu14173467.
|
[20] |
HE N, SHEN G R, JIN X Q,et al. Resveratrol suppresses microglial activation and promotes functional recovery of traumatic spinal cord via improving intestinal microbiota[J]. Pharmacol Res, 2022, 183:106377. DOI: 10.1016/j.phrs.2022.106377.
|
[21] |
TARASKINA A, IGNATYEVA O, LISOVAYA D,et al. Effects of traumatic brain injury on the gut microbiota composition and serum amino acid profile in rats[J]. Cells, 2022, 11(9):1409. DOI: 10.3390/cells11091409.
|
[22] |
GUZMÁN-MEJÍA F, GODÍNEZ-VICTORIA M, VEGA-BAUTISTA A,et al. Intestinal homeostasis under stress siege[J]. Int J Mol Sci, 2021, 22(10):5095. DOI: 10.3390/ijms22105095.
|
[23] |
QU D W, WANG G, YU L L,et al. The effects of diet and gut microbiota on the regulation of intestinal mucin glycosylation[J]. Carbohydr Polym, 2021, 258:117651. DOI: 10.1016/j.carbpol.2021.117651.
|
[24] |
HOULDEN A, GOLDRICK M, BROUGH D,et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production[J]. Brain Behav Immun, 2016, 57:10-20. DOI: 10.1016/j.bbi.2016.04.003.
|
[25] |
ZHOU Y, ZHANG Z J, SUN Y Y,et al. Liangxue Tongyu prescription alleviates brain damage in acute intracerebral hemorrhage rats by regulating intestinal mucosal barrier function[J]. Evid Based Complement Alternat Med, 2022, 2022:2197763. DOI: 10.1155/2022/2197763.
|
[26] |
PAN P F, SONG Y L, DU X X,et al. Intestinal barrier dysfunction following traumatic brain injury[J]. Neurol Sci, 2019, 40(6):1105-1110. DOI: 10.1007/s10072-019-03739-0.
|
[27] |
LEE S, HWANG H, YAMAL J M,et al. IMPACT probability of poor outcome and plasma cytokine concentrations are associated with multiple organ dysfunction syndrome following traumatic brain injury[J]. J Neurosurg, 2019, 131(6):1931-1937. DOI: 10.3171/2018.8.JNS18676.
|
[28] |
LIU X H, LIANG F, SONG W,et al. Effect of Nrf2 signaling pathway on the improvement of intestinal epithelial barrier dysfunction by hyperbaric oxygen treatment after spinal cord injury[J]. Cell Stress Chaperones, 2021, 26(2):433-441. DOI: 10.1007/s12192-020-01190-1.
|
[29] |
LIU Y L, BAO Z Y, XU X P,et al. Extracellular signal-regulated kinase/nuclear factor-Erythroid2-like2/heme oxygenase-1 pathway-mediated mitophagy alleviates traumatic brain injury-induced intestinal mucosa damage and epithelial barrier dysfunction[J]. J Neurotrauma, 2017, 34(13):2119-2131. DOI: 10.1089/neu.2016.4764.
|
[30] |
DUAN H B, HAO C Y, FAN Y M,et al. The role of neuropeptide Y and aquaporin 4 in the pathogenesis of intestinal dysfunction caused by traumatic brain injury[J]. J Surg Res, 2013, 184(2):1006-1012. DOI: 10.1016/j.jss.2013.03.096.
|
[31] |
FILARDY A A, FERREIRA J R M, REZENDE R M,et al. The intestinal microenvironment shapes macrophage and dendritic cell identity and function[J]. Immunol Lett, 2023, 253:41-53. DOI: 10.1016/j.imlet.2023.01.003.
|
[32] |
SANDLER R S, HANSEN J J, PEERY A F,et al. Intraepithelial and Lamina propria lymphocytes do not correlate with symptoms or exposures in microscopic colitis[J]. Clin Transl Gastroenterol, 2022, 13(3):e00467. DOI: 10.14309/ctg.0000000000000467.
|
[33] |
LARABI A, BARNICH N, NGUYEN H T T. New insights into the interplay between autophagy,gut microbiota and inflammatory responses in IBD[J]. Autophagy, 2020, 16(1):38-51. DOI: 10.1080/15548627.2019.1635384.
|
[34] |
KIGERL K A, HALL J C, WANG L L,et al. Gut dysbiosis impairs recovery after spinal cord injury[J]. J Exp Med, 2016, 213(12):2603-2620. DOI: 10.1084/jem.20151345.
|
[35] |
OUYANG S, WANG X B, CHEN Y,et al. Swimming training combined with fecal microbial transplantation protects motor functions in rats with spinal cord injury by improving the intestinal system[J]. Neurosci Lett, 2023, 799:137104. DOI: 10.1016/j.neulet.2023.137104.
|
[36] |
RONG Z J, HUANG Y L, CAI H H,et al. Gut microbiota disorders promote inflammation and aggravate spinal cord injury through the TLR4/MyD88 signaling pathway[J]. Front Nutr, 2021, 8:702659. DOI: 10.3389/fnut.2021.702659.
|
[37] |
YAGURA K, OHTAKI H, TSUMURAYA T,et al. The enhancement of CCL2 and CCL5 by human bone marrow-derived mesenchymal stem/stromal cells might contribute to inflammatory suppression and axonal extension after spinal cord injury[J]. PLoS One, 2020, 15(3):e0230080. DOI: 10.1371/journal.pone.0230080.
|
[38] |
MIAO Y L, FAN X J, WEI L G,et al. Lizhong Decoction ameliorates pulmonary infection secondary to severe traumatic brain injury in rats by regulating the intestinal physical barrier and immune response[J]. J Ethnopharmacol, 2023, 311:116346. DOI: 10.1016/j.jep.2023.116346.
|
[39] |
HU Y C, WANG X J, YE L,et al. Rosuvastatin alleviates intestinal injury by down-regulating the CD40 pathway in the intestines of rats following traumatic brain injury[J]. Front Neurol, 2020, 11:816. DOI: 10.3389/fneur.2020.00816.
|
[40] |
CRUPI R, CORDARO M, CUZZOCREA S,et al. Management of traumatic brain injury:from present to future[J]. Antioxidants, 2020, 9(4):297. DOI: 10.3390/antiox9040297.
|
[41] |
FLURY I, MUELLER G, PERRET C. The risk of malnutrition in patients with spinal cord injury during inpatient rehabilitation-a longitudinal cohort study[J]. Front Nutr, 2023, 10:1085638. DOI: 10.3389/fnut.2023.1085638.
|
[42] |
LEE H Y, OH B M. Nutrition management in patients with traumatic brain injury:a narrative review[J]. Brain Neurorehabil, 2022, 15(1):e4. DOI: 10.12786/bn.2022.15.e4.
|
[43] |
KWAK M J, HA D J, CHOI Y S,et al. Protective and restorative effects of sophorolipid on intestinal dystrophy in dextran sulfate sodium-induced colitis mouse model[J]. Food Funct, 2022, 13(1):161-169. DOI: 10.1039/d1fo03109k.
|
[44] |
PATTERSON G T, OSORIO E Y, PENICHE A,et al. Pathologic inflammation in malnutrition is driven by proinflammatory intestinal microbiota,large intestine barrier dysfunction,and translocation of bacterial lipopolysaccharide[J]. Front Immunol, 2022, 13:846155. DOI: 10.3389/fimmu.2022.846155.
|
[45] |
SASSON A N, INGRAM R J M, ZHANG Z X,et al. The role of precision nutrition in the modulation of microbial composition and function in people with inflammatory bowel disease[J]. Lancet Gastroenterol Hepatol, 2021, 6(9):754-769. DOI: 10.1016/S2468-1253(21)00097-2.
|
[46] |
MYERS S A, GOBEJISHVILI L, SARASWAT OHRI S,et al. Following spinal cord injury,PDE4B drives an acute,local inflammatory response and a chronic,systemic response exacerbated by gut dysbiosis and endotoxemia[J]. Neurobiol Dis, 2019, 124:353-363. DOI: 10.1016/j.nbd.2018.12.008.
|
[47] |
QIN N, HUANG L, DONG R,et al. Polydatin improves intestinal barrier injury after traumatic brain injury in rats by reducing oxidative stress and inflammatory response via activating SIRT1-mediated deacetylation of SOD2 and HMGB1[J]. J South Med Univ, 2022, 42(1):93-100. DOI: 10.12122/j.issn.1673-4254.2022.01.11.
|
[48] |
XU J Q, LIU Q Q, HUANG S Y,et al. The lymphatic system:a therapeutic target for central nervous system disorders[J]. Neural Regen Res, 2023, 18(6):1249-1256. DOI: 10.4103/1673-5374.355741.
|
[49] |
YOU W D, ZHU Y R, WEI A Q,et al. Traumatic brain injury induces gastrointestinal dysfunction and dysbiosis of gut microbiota accompanied by alterations of bile acid profile[J]. J Neurotrauma, 2022, 39(1/2):227-237. DOI: 10.1089/neu.2020.7526.
|
[50] |
ZHANG H J, GAO Y L, LI T,et al. Recombinant human annexin A5 alleviated traumatic-brain-injury induced intestinal injury by regulating the Nrf2/HO-1/HMGB1 pathway[J]. Molecules, 2022, 27(18):5755. DOI: 10.3390/molecules27185755.
|
[51] |
KATZENBERGER R J, GANETZKY B, WASSARMAN D A. The gut reaction to traumatic brain injury[J]. Fly, 2015, 9(2):68-74. DOI: 10.1080/19336934.2015.1085623.
|
[52] |
PRÜSS H, TEDESCHI A, THIRIOT A,et al. Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex[J]. Nat Neurosci, 2017, 20(11):1549-1559. DOI: 10.1038/nn.4643.
|
[53] |
BROWNING K N, TRAVAGLI R A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions[J]. Compr Physiol, 2014, 4(4):1339-1368. DOI: 10.1002/cphy.c130055.
|
[54] |
ZHANG X, JIANG X Y. Effects of enteral nutrition on the barrier function of the intestinal mucosa and dopamine receptor expression in rats with traumatic brain injury[J]. JPEN J Parenter Enteral Nutr, 2015, 39(1):114-123. DOI: 10.1177/0148607113501881.
|