[1] |
MINASYAN H. Sepsis:mechanisms of bacterial injury to the patient[J]. Scand J Trauma Resusc Emerg Med, 2019, 27(1):19. DOI: 10.1186/s13049-019-0596-4.
|
[2] |
SCHULER A, WULF D A, LU Y,et al. The impact of acute organ dysfunction on long-term survival in Sepsis[J]. Crit Care Med, 2018, 46(6):843-849. DOI: 10.1097/CCM.0000000000003023.
|
[3] |
SUN J, ZHANG J X, WANG X F,et al. Gut-liver crosstalk in sepsis-induced liver injury[J]. Crit Care, 2020, 24(1):614. DOI: 10.1186/s13054-020-03327-1.
|
[4] |
YEH A, ROGERS M B, FIREK B,et al. Dysbiosis across multiple body sites in critically ill adult surgical patients[J]. Shock, 2016, 46(6):649-654. DOI: 10.1097/SHK.0000000000000691.
|
[5] |
HYOJU S K, ZABORIN A, KESKEY R,et al. Mice fed an obesogenic western diet,administered antibiotics,and subjected to a sterile surgical procedure develop lethal septicemia with multidrug-resistant pathobionts[J]. mBio, 2019, 10(4):e00903-00919. DOI: 10.1128/mBio.00903-19.
|
[6] |
FAY K T, KLINGENSMITH N J, CHEN C W,et al. The gut microbiome alters immunophenotype and survival from sepsis[J]. FASEB J, 2019, 33(10):11258-11269. DOI: 10.1096/fj.201802188R.
|
[7] |
MENG X, LI S, LI Y,et al. Gut microbiota's relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics[J]. Nutrients, 2018, 10(10):1457. DOI: 10.3390/nu10101457.
|
[8] |
STALEY C, WEINGARDEN A R, KHORUTS A,et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states[J]. Appl Microbiol Biotechnol, 2017, 101(1):47-64. DOI: 10.1007/s00253-016-8006-6.
|
[9] |
MA C, HAN M J, HEINRICH B,et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360(6391):eaan5931. DOI: 10.1126/science.aan5931.
|
[10] |
JUANOLA O, HASSAN M, KUMAR P,et al. Intestinal microbiota drives cholestasis-induced specific hepatic gene expression patterns[J]. Gut Microbes, 2021, 13(1):1-20. DOI: 10.1080/19490976.2021.1911534.
|
[11] |
URDANETA V, CASADESÚS J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Front Med (Lausanne), 2017, 4:163. DOI: 10.3389/fmed.2017.00163.
|
[12] |
YUAN Y Q,LIU Q B,ZHAO F Q,et al. Holothuria leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation[J]. Int J Mol Sci,2019,20(19):4738.
|
[13] |
WANG G, PAN R L, LIANG X,et al. Perfluorooctanoic acid-induced liver injury is potentially associated with gut microbiota dysbiosis[J]. Chemosphere, 2021, 266:129004. DOI: 10.1016/j.chemosphere.2020.129004.
|
[14] |
MA S M, SUN Y Y, ZHENG X T,et al. Gastrodin attenuates perfluorooctanoic acid-induced liver injury by regulating gut microbiota composition in mice[J]. Bioengineered, 2021, 12(2):11546-11556. DOI: 10.1080/21655979.2021.2009966.
|
[15] |
LI X L, LIU Y, GUO X F,et al. Effect of Lactobacillus casei on lipid metabolism and intestinal microflora in patients with alcoholic liver injury[J]. Eur J Clin Nutr, 2021, 75(8):1227-1236. DOI: 10.1038/s41430-020-00852-8.
|
[16] |
XU B C, HAO K Y, CHEN X G,et al. Broussonetia papyrifera polysaccharide alleviated acetaminophen-induced liver injury by regulating the intestinal flora[J]. Nutrients, 2022, 14(13):2636. DOI: 10.3390/nu14132636.
|
[17] |
XIA J F, LV L X, LIU B Q,et al. Akkermansia muciniphila ameliorates acetaminophen-induced liver injury by regulating gut microbial composition and metabolism[J]. Microbiol Spectr, 2022, 10(1):e0159621. DOI: 10.1128/spectrum.01596-21.
|
[18] |
SUN Y, CONG L, YANG S,et al. Moxifloxacin induced liver injury by causing Lachnospiraceae deficiency and interfering with butyric acid production through gut-liver axis[J]. Dis Markers, 2022, 2022:9302733. DOI: 10.1155/2022/9302733.
|
[19] |
|
[20] |
LIANG H Y, SONG H, ZHANG X J,et al. Metformin attenuated sepsis-related liver injury by modulating gut microbiota[J]. Emerg Microbes Infect, 2022, 11(1):815-828. DOI: 10.1080/22221751.2022.2045876.
|
[21] |
MA Y, LIU G, TANG M Y,et al. Epigallocatechin gallate can protect mice from acute stress induced by LPS while stabilizing gut microbes and serum metabolites levels[J]. Front Immunol, 2021, 12:640305. DOI: 10.3389/fimmu.2021.640305.
|
[22] |
LIU Z G, LI N, FANG H,et al. Enteric dysbiosis is associated with sepsis in patients[J]. FASEB J, 2019, 33(11):12299-12310. DOI: 10.1096/fj.201900398RR.
|
[23] |
WULLAERT A, BONNET M C, PASPARAKIS M. NF-κB in the regulation of epithelial homeostasis and inflammation[J]. Cell Res, 2011, 21(1):146-158. DOI: 10.1038/cr.2010.175.
|
[24] |
XU D Q, LIAO S T, LV Y,et al. NMR-based metabolomics approach reveals effects of antioxidant nutrients in sepsis-induced changes in rat liver injury[J]. J Nutr Biochem, 2020, 85:108440. DOI: 10.1016/j.jnutbio.2020.108440.
|
[25] |
DKHIL M A, AL-QURAISHY S, MONEIM A E A. Ziziphus spina-christi leaf extract pretreatment inhibits liver and spleen injury in a mouse model of sepsis via anti-oxidant and anti-inflammatory effects[J]. Inflammopharmacology, 2018, 26(3):779-791. DOI: 10.1007/s10787-017-0439-8.
|
[26] |
LI X L, LI M F, LIU L Y,et al. Protective effects of glucocorticoid on liver injury in a rat sepsis model[J]. Exp Ther Med, 2019, 18(4):3153-3160. DOI: 10.3892/etm.2019.7899.
|
[27] |
GONG S H, YAN Z Z, LIU Z G,et al. Intestinal microbiota mediates the susceptibility to polymicrobial Sepsis-induced liver injury by granisetron generation in mice[J]. Hepatology, 2019, 69(4):1751-1767. DOI: 10.1002/hep.30361.
|
[28] |
CHEN Y Y, GUAN W Y, ZHANG N,et al. Lactobacillus plantarum Lp2 improved LPS-induced liver injury through the TLR-4/MAPK/NFκB and Nrf2-HO-1/CYP2E1 pathways in mice[J]. Food Nutr Res, 2022:66. DOI: 10.29219/fnr.v66.5459.
|
[29] |
LAU T Y,XIAO J,LIONG E C,et al. Hepatic response to chronic hypoxia in experimental rat model through HIF-1 alpha,activator protein-1 and NF-kappa B[J]. Histol Histopathol,2013,28(4):463-471.
|
[30] |
ZHAN C Y, CHEN D, LUO J L,et al. Protective role of down-regulated microRNA-31 on intestinal barrier dysfunction through inhibition of NF-κB/HIF-1α pathway by binding to HMOX1 in rats with sepsis[J]. Mol Med, 2018, 24(1):55. DOI: 10.1186/s10020-018-0053-2.
|
[31] |
MA Z H, ZHANG Y M, LI Q C,et al. Resveratrol improves alcoholic fatty liver disease by downregulating HIF-1α expression and mitochondrial ROS production[J]. PLoS One, 2017, 12(8):e0183426. DOI: 10.1371/journal.pone.0183426.
|
[32] |
DING L, GONG Y H, YANG Z F,et al. Lactobacillus rhamnosus GG ameliorates liver injury and hypoxic hepatitis in rat model of CLP-induced Sepsis[J]. Dig Dis Sci, 2019, 64(10):2867-2877. DOI: 10.1007/s10620-019-05628-0.
|
[33] |
|
[34] |
GUO X X, ZHANG Y D, WANG T C,et al. Ginger and 6-gingerol prevent lipopolysaccharide-induced intestinal barrier damage and liver injury in mice[J]. J Sci Food Agric, 2022, 102(3):1066-1075. DOI: 10.1002/jsfa.11442.
|
[35] |
FU J H, LI G F, WU X M,et al. Sodium butyrate ameliorates intestinal injury and improves survival in a rat model of cecal ligation and puncture-induced Sepsis[J]. Inflammation, 2019, 42(4):1276-1286. DOI: 10.1007/s10753-019-00987-2.
|
[36] |
LORENTZ C A, LIANG Z, MENG M,et al. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis[J]. Mol Med, 2017, 23:155-165. DOI: 10.2119/molmed.2016.00256.
|
[37] |
BUFFIE C G, PAMER E G. Microbiota-mediated colonization resistance against intestinal pathogens[J]. Nat Rev Immunol, 2013, 13(11):790-801. DOI: 10.1038/nri3535.
|
[38] |
WANG G, HUANG S, WANG Y M,et al. Bridging intestinal immunity and gut microbiota by metabolites[J]. Cell Mol Life Sci, 2019, 76(20):3917-3937. DOI: 10.1007/s00018-019-03190-6.
|
[39] |
GARGIULLO L, DEL CHIERICO F, D'ARGENIO P,et al. Gut microbiota modulation for multidrug-resistant organism decolonization:present and future perspectives[J]. Front Microbiol, 2019, 10:1704. DOI: 10.3389/fmicb.2019.01704.
|
[40] |
KIM S M, DEFAZIO J R, HYOJU S K,et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity[J]. Nat Commun, 2020, 11(1):2354. DOI: 10.1038/s41467-020-15545-w.
|
[41] |
GAI X W, WANG H W, LI Y Q,et al. Fecal microbiota transplantation protects the intestinal mucosal barrier by reconstructing the gut microbiota in a murine model of Sepsis[J]. Front Cell Infect Microbiol, 2021, 11:736204. DOI: 10.3389/fcimb.2021.736204.
|
[42] |
LI Q R, WANG C Y, TANG C,et al. Successful treatment of severe sepsis and diarrhea after vagotomy utilizing fecal microbiota transplantation:a case report[J]. Crit Care, 2015, 19(1):37. DOI: 10.1186/s13054-015-0738-7.
|
[43] |
ZHAO H Y, LYU Y J, ZHAI R Q,et al. Metformin mitigates Sepsis-related neuroinflammation via modulating gut microbiota and metabolites[J]. Front Immunol, 2022, 13:797312. DOI: 10.3389/fimmu.2022.797312.
|
[44] |
ZHANG H D, XU J, WU Q R,et al. Gut microbiota mediates the susceptibility of mice to Sepsis-associated encephalopathy by butyric acid[J]. J Inflamm Res, 2022, 15:2103-2119. DOI: 10.2147/JIR.S350566.
|
[45] |
GUNDACKER N D,TAMHANE A,WALKER J B,et al. Comparative effectiveness of faecal microbiota transplant by route of administration[J]. J Hosp Infect,2017,96(4):349-352.
|
[46] |
RAMAI D, ZAKHIA K, OFOSU A,et al. Fecal microbiota transplantation:donor relation,fresh or frozen,delivery methods,cost-effectiveness[J]. Ann Gastroenterol, 2019, 32(1):30-38. DOI: 10.20524/aog.2018.0328.
|
[47] |
KAO D N, ROACH B, SILVA M,et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection:a randomized clinical trial[J]. JAMA, 2017, 318(20):1985-1993. DOI: 10.1001/jama.2017.17077.
|
[48] |
DEFILIPP Z, BLOOM P P, TORRES SOTO M,et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant[J]. N Engl J Med, 2019, 381(21):2043-2050. DOI: 10.1056/NEJMoa1910437.
|
[49] |
BARBOSA R S D, VIEIRA-COELHO M A. Probiotics and prebiotics:focus on psychiatric disorders - a systematic review[J]. Nutr Rev, 2020, 78(6):437-450. DOI: 10.1093/nutrit/nuz080.
|
[50] |
YIN J T, SUN W, YU X Q,et al. Lacticaseibacillus rhamnosus TR08 alleviated intestinal injury and modulated microbiota dysbiosis in septic mice[J]. BMC Microbiol, 2021, 21(1):249. DOI: 10.1186/s12866-021-02317-9.
|
[51] |
ÁVILA P R M, MICHELS M, VUOLO F,et al. Protective effects of fecal microbiota transplantation in sepsis are independent of the modulation of the intestinal flora[J]. Nutrition, 2020, 73:110727. DOI: 10.1016/j.nut.2020.110727.
|
[52] |
TSUI K C, YEN T L, HUANG C J,et al. Lactobacillus rhamnosus GG as dietary supplement improved survival from lipopolysaccharides-induced sepsis in mice[J]. Food Sci Nutr, 2021, 9(12):6786-6793. DOI: 10.1002/fsn3.2630.
|
[53] |
ABUOHASHISH H M, ZAGHLOUL E H, EL SHARKAWY A S,et al. Pharmacological effects of marine-derived Enterococcus faecium EA9 against acute lung injury and inflammation in cecal ligated and punctured septic rats[J]. Biomed Res Int, 2021, 2021:5801700. DOI: 10.1155/2021/5801700.
|
[54] |
TSILIKA M, THOMA G, AIDONI Z,et al. A four-probiotic preparation for ventilator-associated pneumonia in multi-trauma patients:results of a randomized clinical trial[J]. Int J Antimicrob Agents, 2022, 59(1):106471. DOI: 10.1016/j.ijantimicag.2021.106471.
|
[55] |
CHU C, MURDOCK M H, JING D Q,et al. The microbiota regulate neuronal function and fear extinction learning[J]. Nature, 2019, 574(7779):543-548. DOI: 10.1038/s41586-019-1644-y.
|
[56] |
LIU J M, JIN Y J, LI H J,et al. Probiotics exert protective effect against Sepsis-induced cognitive impairment by reversing gut microbiota abnormalities[J]. J Agric Food Chem, 2020, 68(50):14874-14883. DOI: 10.1021/acs.jafc.0c06332.
|
[57] |
CHANG C M, TSAI M H, LIAO W C,et al. Effects of probiotics on gut microbiomes of extremely preterm infants in the neonatal intensive care unit:a prospective cohort study[J]. Nutrients, 2022, 14(15):3239. DOI: 10.3390/nu14153239.
|
[58] |
GRANGER C, DERMYSHI E, ROBERTS E,et al. Necrotising enterocolitis,late-onset sepsis and mortality after routine probiotic introduction in the UK[J]. Arch Dis Child Fetal Neonatal Ed, 2022, 107(4):352-358. DOI: 10.1136/archdischild-2021-322252.
|
[59] |
AYDOǦAN S, DILLI D, ÖZYAZICI A,et al. Lactobacillus rhamnosus Sepsis associated with probiotic therapy in a term infant with congenital heart disease[J]. Fetal Pediatr Pathol, 2022, 41(5):823-827. DOI: 10.1080/15513815.2021.1966144.
|
[60] |
GÜN E, ÖZDEMIR H, ÇELIK D B,et al. Saccharomyces cerevisiae fungemia due to an unexpected source in the pediatric intensive care unit[J]. Turk J Pediatr, 2022, 64(1):138-141. DOI: 10.24953/turkjped.2020.1668.
|
[61] |
SINHA A P, GUPTA S S, POLURU R,et al. Evaluating the efficacy of a multistrain probiotic supplementation for prevention of neonatal sepsis in 0-2-month-old low birth weight infants in India-the "ProSPoNS" Study protocol for a phaseⅢ,multicentric,randomized,double-blind,placebo-controlled trial[J]. Trials, 2021, 22(1):242. DOI: 10.1186/s13063-021-05193-w.
|