Page 12 - 2023-08-中国全科医学
P. 12

2023年3月   第26卷   第8期                                 http: //www.chinagp.net   E-mail: zgqkyx@chinagp.net.cn  ·909·

               bioconjchem.5b00590.                            [25]HOU X Y,LIN H,ZHOU X D,et al. Novel dual ROS-sensitive
           [12]KORCHINSKI D J,TAHA M,YANG R Z,et al. Iron oxide as an   and CD44 receptor targeting nanomicelles based on oligomeric
               MRI contrast agent for cell tracking[J]. Magn Reson Insights,  hyaluronic acid for the efficient therapy of atherosclerosis[J].
               2015,8(Suppl 1):15-29. DOI:10.4137/MRI.S23557.       Carbohydr  Polym,2020,232:115787.  DOI:10.1016/j.
           [13]LU K Y,LIN P Y,CHUANG E Y,et al. H 2 O 2 -depleting and   carbpol.2019.115787.
               O 2 -generating selenium nanoparticles for fluorescence imaging   [26]KIM H,KUMAR S,KANG D W,et al. Affinity-driven design
               and  photodynamic  treatment  of  proinflammatory-activated   of cargo-switching nanoparticles to leverage a cholesterol-rich
               macrophages[J]. ACS Appl Mater Interfaces,2017,9(6):  microenvironment for atherosclerosis therapy[J]. ACS Nano,
               5158-5172. DOI:10.1021/acsami.6b15515.               2020,14(6):6519-6531. DOI:10.1021/acsnano.9b08216.
           [14]KOSUGE H,SHERLOCK S P,KITAGAWA T,et al. Near    [27]BOADA  C,ZINGER  A,TSAO  C,et  al.  Rapamycin-
               infrared imaging and photothermal ablation of vascular inflammation   loaded  biom im etic  nanoparticles   revers e  vas cular
               using single-walled carbon nanotubes[J]. J Am Heart Assoc,  inflammation[J]. Circ Res,2020,126(1):25-37. DOI:
               2012,1(6):e002568. DOI:10.1161/JAHA.112.002568.      10.1161/CIRCRESAHA.119.315185.
           [15]CHHOUR  P,NAHA  P  C,O'NEILL  S  M,et  al.  Labeling   [28]BELDMAN  T  J,MALINOVA  T  S,DESCLOS  E,et  al.
               monocytes with gold nanoparticles to track their recruitment in   Nanoparticle-aided characterization  of  arterial  endothelial
               atherosclerosis with computed tomography[J]. Biomaterials,  architecture during atherosclerosis progression and metabolic
               2016,87:93-103. DOI:10.1016/j.biomaterials.2016.02.009.   therapy[J]. ACS Nano,2019,13(12):13759-13774.
           [16]QIN J B,PENG Z Y,LI B,et al. Gold nanorods as a theranostic   DOI:10.1021/acsnano.8b08875.
               platform for in vitro and in vivo imaging and photothermal therapy of   [29]KIM M,SAHU A,HWANG Y,et al. Targeted delivery of anti-
               inflammatory macrophages[J]. Nanoscale,2015,7(33):   inflammatory cytokine by nanocarrier reduces atherosclerosis in
                                                                        -/-
               13991-14001. DOI:10.1039/c5nr02521d.                 Apo E  mice[J]. Biomaterials,2020,226:119550. DOI:
           [17]SUK J S,XU Q G,KIM N,et al. PEGylation as a strategy for   10.1016/j.biomaterials.2019.119550.
               improving nanoparticle-based drug and gene delivery[J]. Adv   [30]WANG Y Q,LI L L,ZHAO W B,et al. Targeted therapy of
               Drug Deliv Rev,2016,99(Pt A):28-51. DOI:10.1016/j.   atherosclerosis by a broad-spectrum reactive oxygen species
               addr.2015.09.012.                                    scavenging  nanoparticle  with  intrinsic  anti-inflammatory
           [18]LIANG X Y,LI H Y,ZHANG A A,et al. Red blood cell     activity[J]. ACS Nano,2018,12(9):8943-8960. DOI:
               biomimetic nanoparticle with anti-inflammatory,anti-oxidative   10.1021/acsnano.8b02037.
               and hypolipidemia effect ameliorated atherosclerosis therapy[J].   [31]CHMIELOWSKI R A,ABDELHAMID D S,FAIG J J,et al.
               Nanomed-Nanotechnol Biol Med,2022,41:102519. DOI:    Athero-inflammatory nanotherapeutics:ferulic acid-based poly
               10.1016/j.nano.2022.102519.                          (anhydride-ester) nanoparticles attenuate foam cell formation
           [19]MEHTA  S,BONGCARON  V,NGUYEN  T  K,et  al.  An       by regulating macrophage lipogenesis and reactive oxygen species
               ultrasound-responsive theranostic cyclodextrin-loaded nanoparticle   generation[J]. Acta Biomater,2017,57:85-94. DOI:
               for multimodal imaging and therapy for atherosclerosis[J]. Small,  10.1016/j.actbio.2017.05.029.
               2022,18(31):e2200967. DOI:10.1002/smll.202200967.   [32]SONG Y N,HUANG Z Y,LIU X,et al. Platelet membrane-
           [20]FANG F,NI Y H,YU H C,et al. Inflammatory endothelium-  coated nanoparticle-mediated targeting delivery of Rapamycin
               targeted and cathepsin responsive nanoparticles are effective against   blocks atherosclerotic plaque development and stabilizes plaque
                                                                                             -/-
               atherosclerosis[J]. Theranostics,2022,12(9):4200-4220.   in apolipoprotein E-deficient (ApoE ) mice[J]. Nanomed-
               DOI:10.7150/thno.70896.                              Nanotechnol Biol Med,2019,15(1):13-24. DOI:10.1016/j.
           [21]GAO C,LIU C H,CHEN Q,et al. Cyclodextrin-mediated    nano.2018.08.002.
               conjugation  of  macrophage  and  liposomes  for  treatment  of   [33]FAVARI E,THOMAS M J,SORCI-THOMAS M G. High-
               atherosclerosis[J]. J Control Release,2022,349:2-15. DOI:  density lipoprotein functionality as a new pharmacological target
               10.1016/j.jconrel.2022.06.053.                       on cardiovascular disease:unifying mechanism that explains
           [22]PHAM L M,KIM E C,OU W Q,et al. Targeting and clearance   high-density lipoprotein protection toward the progression of
               of senescent foamy macrophages and senescent endothelial cells   atherosclerosis[J]. J Cardiovasc Pharmacol,2018,71(6):
               by antibody-functionalized mesoporous silica nanoparticles for   325-331. DOI:10.1097/FJC.0000000000000573.
               alleviating aorta atherosclerosis[J]. Biomaterials,2021,269:  [34]MANSUKHANI N A,PETERS E B,SO M M,et al. Peptide
               120677. DOI:10.1016/j.biomaterials.2021.120677.      amphiphile supramolecular nanostructures as a targeted therapy
           [23]WANG Y,ZHANG K,LI T H,et al. Macrophage membrane     for atherosclerosis[J]. Macromol Biosci,2019,19(6):
               functionalized  biomimetic  nanoparticles  for  targeted  anti-  e1900066. DOI:10.1002/mabi.201900066.
               atherosclerosis applications[J]. Theranostics,2021,11(1):  [35]CHIN D D,POON C,TRAC N,et al. Collagenase-cleavable
               164-180. DOI:10.7150/thno.47841.                     peptide amphiphile micelles as a novel theranostic strategy in
           [24]DHANASEKARA C S,ZHANG J,NIE S F,et al. Nanoparticles   atherosclerosis[J]. Adv Ther (Weinh),2020,3(3):
               target intimal macrophages in atherosclerotic lesions[J].   1900196. DOI:10.1002/adtp.201900196.
               Nanomed-Nanotechnol Biol Med,2021,32:102346. DOI:  [36]AHERN R J,HANRAHAN J P,TOBIN J M,et al. Comparison of
               10.1016/j.nano.2020.102346.                          fenofibrate-mesoporous silica drug-loading processes for enhanced
   7   8   9   10   11   12   13   14   15   16   17