Page 12 - 2023-08-中国全科医学
P. 12
2023年3月 第26卷 第8期 http: //www.chinagp.net E-mail: zgqkyx@chinagp.net.cn ·909·
bioconjchem.5b00590. [25]HOU X Y,LIN H,ZHOU X D,et al. Novel dual ROS-sensitive
[12]KORCHINSKI D J,TAHA M,YANG R Z,et al. Iron oxide as an and CD44 receptor targeting nanomicelles based on oligomeric
MRI contrast agent for cell tracking[J]. Magn Reson Insights, hyaluronic acid for the efficient therapy of atherosclerosis[J].
2015,8(Suppl 1):15-29. DOI:10.4137/MRI.S23557. Carbohydr Polym,2020,232:115787. DOI:10.1016/j.
[13]LU K Y,LIN P Y,CHUANG E Y,et al. H 2 O 2 -depleting and carbpol.2019.115787.
O 2 -generating selenium nanoparticles for fluorescence imaging [26]KIM H,KUMAR S,KANG D W,et al. Affinity-driven design
and photodynamic treatment of proinflammatory-activated of cargo-switching nanoparticles to leverage a cholesterol-rich
macrophages[J]. ACS Appl Mater Interfaces,2017,9(6): microenvironment for atherosclerosis therapy[J]. ACS Nano,
5158-5172. DOI:10.1021/acsami.6b15515. 2020,14(6):6519-6531. DOI:10.1021/acsnano.9b08216.
[14]KOSUGE H,SHERLOCK S P,KITAGAWA T,et al. Near [27]BOADA C,ZINGER A,TSAO C,et al. Rapamycin-
infrared imaging and photothermal ablation of vascular inflammation loaded biom im etic nanoparticles revers e vas cular
using single-walled carbon nanotubes[J]. J Am Heart Assoc, inflammation[J]. Circ Res,2020,126(1):25-37. DOI:
2012,1(6):e002568. DOI:10.1161/JAHA.112.002568. 10.1161/CIRCRESAHA.119.315185.
[15]CHHOUR P,NAHA P C,O'NEILL S M,et al. Labeling [28]BELDMAN T J,MALINOVA T S,DESCLOS E,et al.
monocytes with gold nanoparticles to track their recruitment in Nanoparticle-aided characterization of arterial endothelial
atherosclerosis with computed tomography[J]. Biomaterials, architecture during atherosclerosis progression and metabolic
2016,87:93-103. DOI:10.1016/j.biomaterials.2016.02.009. therapy[J]. ACS Nano,2019,13(12):13759-13774.
[16]QIN J B,PENG Z Y,LI B,et al. Gold nanorods as a theranostic DOI:10.1021/acsnano.8b08875.
platform for in vitro and in vivo imaging and photothermal therapy of [29]KIM M,SAHU A,HWANG Y,et al. Targeted delivery of anti-
inflammatory macrophages[J]. Nanoscale,2015,7(33): inflammatory cytokine by nanocarrier reduces atherosclerosis in
-/-
13991-14001. DOI:10.1039/c5nr02521d. Apo E mice[J]. Biomaterials,2020,226:119550. DOI:
[17]SUK J S,XU Q G,KIM N,et al. PEGylation as a strategy for 10.1016/j.biomaterials.2019.119550.
improving nanoparticle-based drug and gene delivery[J]. Adv [30]WANG Y Q,LI L L,ZHAO W B,et al. Targeted therapy of
Drug Deliv Rev,2016,99(Pt A):28-51. DOI:10.1016/j. atherosclerosis by a broad-spectrum reactive oxygen species
addr.2015.09.012. scavenging nanoparticle with intrinsic anti-inflammatory
[18]LIANG X Y,LI H Y,ZHANG A A,et al. Red blood cell activity[J]. ACS Nano,2018,12(9):8943-8960. DOI:
biomimetic nanoparticle with anti-inflammatory,anti-oxidative 10.1021/acsnano.8b02037.
and hypolipidemia effect ameliorated atherosclerosis therapy[J]. [31]CHMIELOWSKI R A,ABDELHAMID D S,FAIG J J,et al.
Nanomed-Nanotechnol Biol Med,2022,41:102519. DOI: Athero-inflammatory nanotherapeutics:ferulic acid-based poly
10.1016/j.nano.2022.102519. (anhydride-ester) nanoparticles attenuate foam cell formation
[19]MEHTA S,BONGCARON V,NGUYEN T K,et al. An by regulating macrophage lipogenesis and reactive oxygen species
ultrasound-responsive theranostic cyclodextrin-loaded nanoparticle generation[J]. Acta Biomater,2017,57:85-94. DOI:
for multimodal imaging and therapy for atherosclerosis[J]. Small, 10.1016/j.actbio.2017.05.029.
2022,18(31):e2200967. DOI:10.1002/smll.202200967. [32]SONG Y N,HUANG Z Y,LIU X,et al. Platelet membrane-
[20]FANG F,NI Y H,YU H C,et al. Inflammatory endothelium- coated nanoparticle-mediated targeting delivery of Rapamycin
targeted and cathepsin responsive nanoparticles are effective against blocks atherosclerotic plaque development and stabilizes plaque
-/-
atherosclerosis[J]. Theranostics,2022,12(9):4200-4220. in apolipoprotein E-deficient (ApoE ) mice[J]. Nanomed-
DOI:10.7150/thno.70896. Nanotechnol Biol Med,2019,15(1):13-24. DOI:10.1016/j.
[21]GAO C,LIU C H,CHEN Q,et al. Cyclodextrin-mediated nano.2018.08.002.
conjugation of macrophage and liposomes for treatment of [33]FAVARI E,THOMAS M J,SORCI-THOMAS M G. High-
atherosclerosis[J]. J Control Release,2022,349:2-15. DOI: density lipoprotein functionality as a new pharmacological target
10.1016/j.jconrel.2022.06.053. on cardiovascular disease:unifying mechanism that explains
[22]PHAM L M,KIM E C,OU W Q,et al. Targeting and clearance high-density lipoprotein protection toward the progression of
of senescent foamy macrophages and senescent endothelial cells atherosclerosis[J]. J Cardiovasc Pharmacol,2018,71(6):
by antibody-functionalized mesoporous silica nanoparticles for 325-331. DOI:10.1097/FJC.0000000000000573.
alleviating aorta atherosclerosis[J]. Biomaterials,2021,269: [34]MANSUKHANI N A,PETERS E B,SO M M,et al. Peptide
120677. DOI:10.1016/j.biomaterials.2021.120677. amphiphile supramolecular nanostructures as a targeted therapy
[23]WANG Y,ZHANG K,LI T H,et al. Macrophage membrane for atherosclerosis[J]. Macromol Biosci,2019,19(6):
functionalized biomimetic nanoparticles for targeted anti- e1900066. DOI:10.1002/mabi.201900066.
atherosclerosis applications[J]. Theranostics,2021,11(1): [35]CHIN D D,POON C,TRAC N,et al. Collagenase-cleavable
164-180. DOI:10.7150/thno.47841. peptide amphiphile micelles as a novel theranostic strategy in
[24]DHANASEKARA C S,ZHANG J,NIE S F,et al. Nanoparticles atherosclerosis[J]. Adv Ther (Weinh),2020,3(3):
target intimal macrophages in atherosclerotic lesions[J]. 1900196. DOI:10.1002/adtp.201900196.
Nanomed-Nanotechnol Biol Med,2021,32:102346. DOI: [36]AHERN R J,HANRAHAN J P,TOBIN J M,et al. Comparison of
10.1016/j.nano.2020.102346. fenofibrate-mesoporous silica drug-loading processes for enhanced