| [1] |
|
| [2] |
BRÜCK K, STEL V S, GAMBARO G, et al. CKD prevalence varies across the European general population[J]. J Am Soc Nephrol, 2016, 27(7):2135-2147. DOI: 10.1681/ASN.2015050542.
|
| [3] |
STEVENS P E, LEVIN A, Kidney Disease:Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease:synopsis of the kidney disease:improving global outcomes 2012 clinical practice guideline[J]. Ann Intern Med, 2013, 158(11):825-830. DOI: 10.7326/0003-4819-158-11-201306040-00007.
|
| [4] |
|
| [5] |
YUAN Q J, ZHANG H X, DENG T C, et al. Role of artificial intelligence in kidney disease[J]. Int J Med Sci, 2020, 17(7):970-984. DOI: 10.7150/ijms.42078.
|
| [6] |
CHANG W X, ASAKAWA S, TOYOKI D, et al. Predictors and the subsequent risk of end-stage renal disease-usefulness of 30% decline in estimated GFR over 2 years[J]. PLoS One, 2015, 10(7):e0132927. DOI: 10.1371/journal.pone.0132927.
|
| [7] |
MATSUSHITA K, CHEN J S, SANG Y Y, et al. Risk of end-stage renal disease in Japanese patients with chronic kidney disease increases proportionately to decline in estimated glomerular filtration rate[J]. Kidney Int,2016,90(5):1109-1114.
|
| [8] |
NEUEN B L, WELDEGIORGIS M, HERRINGTON W G, et al. Changes in GFR and albuminuria in routine clinical practice and the risk of kidney disease progression[J]. Am J Kidney Dis, 2021, 78(3):350-360.e1. DOI: 10.1053/j.ajkd.2021.02.335.
|
| [9] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C/OL]//PEREIRA F,BURGES C J C,BOTTOU L,et al. Advances in Neural Information Processing Systems:volume 25. Curran Associates,Inc.,2012. (2012-01-01)[2024-10-08].
|
| [10] |
|
| [11] |
LECUN Y, KAVUKCUOGLU K, FARABET C. Convolutional networks and applications in vision[C]//Proceedings of 2010 IEEE International Symposium on Circuits and Systems. Paris:IEEE, 2010:253-256. DOI: 10.1109/ISCAS.2010.5537907.
|
| [12] |
|
| [13] |
骆正山,张景奇,骆济豪,等. 基于IMA-AmMLP模型的CO2驱最小混相压力预测[J]. 石油学报,2024,45(10):1522-1528.
|
| [14] |
黄光成,周良,石建伟,等. 机器学习算法在疾病风险预测中的应用与比较[J]. 中国卫生资源,2020,23(4):432-436.
|
| [15] |
|
| [16] |
|
| [17] |
王慧,戚倩倩,李雪,等. 皮肤肿瘤图像自动分类的研究进展[J]. 计算机工程与应用,2022,58(16):31-48.
|
| [18] |
|
| [19] |
MORENO-TORRES J G, HERRERA F. A preliminary study on overlapping and data fracture in imbalanced domains by means of Genetic Programming-based feature extraction[C]//2010 10th International Conference on Intelligent Systems Design and Applications. Egypt:IEEE,2010:501-506.
|
| [20] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Jair, 2002, 16:321-357. DOI: 10.1613/jair.953.
|
| [21] |
ZHOU Z H, LIU X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE Trans Knowl Data Eng,2006,18(1):63-77.
|
| [22] |
RAJPURKAR P, O'CONNELL C, SCHECHTER A, et al. CheXaid:deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV[J]. NPJ Digit Med, 2020, 3:115. DOI: 10.1038/s41746-020-00322-2.
|
| [23] |
WANG X S, PENG Y F, LU L, et al. ChestX-Ray8:hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common Thorax diseases[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu:IEEE, 2017:3462-3471. DOI: 10.1109/CVPR.2017.369.
|
| [24] |
FOGEL A L, KVEDAR J C. Artificial intelligence powers digital medicine[J]. NPJ Digit Med, 2018, 1:5. DOI: 10.1038/s41746-017-0012-2.
|
| [25] |
VENTRELLA P, DELGROSSI G, FERRARIO G, et al. Supervised machine learning for the assessment of Chronic Kidney Disease advancement[J]. Comput Methods Programs Biomed, 2021, 209:106329. DOI: 10.1016/j.cmpb.2021.106329.
|
| [26] |
HUANG M L, CHOU Y C. Combining a gravitational search algorithm,particle swarm optimization,and fuzzy rules to improve the classification performance of a feed-forward neural network[J]. Comput Methods Programs Biomed, 2019, 180:105016. DOI: 10.1016/j.cmpb.2019.105016.
|
| [27] |
NAVANEETH B, SUCHETHA M. A dynamic pooling based convolutional neural network approach to detect chronic kidney disease[J]. Biomed Signal Process Control, 2020, 62:102068. DOI: 10.1016/j.bspc.2020.102068.
|
| [28] |
SATO N, UCHINO E, KOJIMA R, et al. Prediction and visualization of acute kidney injury in intensive care unit using one-dimensional convolutional neural networks based on routinely collected data[J]. Comput Methods Programs Biomed, 2021, 206:106129. DOI: 10.1016/j.cmpb.2021.106129.
|
| [29] |
|