[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660.
|
[2] |
WANG Y J, YE F Z, LIANG Y R, et al. Breast cancer brain metastasis:insight into molecular mechanisms and therapeutic strategies[J]. Br J Cancer, 2021, 125(8):1056-1067. DOI: 10.1038/s41416-021-01424-8.
|
[3] |
ZHA H L, ZONG M, LIU X P, et al. Preoperative ultrasound-based radiomics score can improve the accuracy of the Memorial Sloan Kettering Cancer Center nomogram for predicting sentinel lymph node metastasis in breast cancer[J]. Eur J Radiol, 2021, 135:109512. DOI: 10.1016/j.ejrad.2020.109512.
|
[4] |
ZHOU L Q, WU X L, HUANG S Y, et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology, 2020, 294(1):19-28. DOI: 10.1148/radiol.2019190372.
|
[5] |
MARINO M A, AVENDANO D, ZAPATA P, et al. Lymph node imaging in patients with primary breast cancer:concurrent diagnostic tools[J]. Oncologist, 2020, 25(2):e231-242. DOI: 10.1634/theoncologist.2019-0427.
|
[6] |
JAMARIS S, JAMALUDDIN J, ISLAM T, et al. Is pre-operative axillary ultrasound alone sufficient to determine need for axillary dissection in early breast cancer patients?[J]. Medicine, 2021, 100(19):e25412. DOI: 10.1097/MD.0000000000025412.
|
[7] |
|
[8] |
桑田. 超声联合免疫组化预测乳腺癌腋窝淋巴结转移的价值[D]. 石河子:石河子大学,2022.
|
[9] |
SUN J W, WANG X L, ZHAO Q, et al. Virtual touch tissue imaging and quantification(VTIQ)in the evaluation of breast lesions:the associated factors leading to misdiagnosis[J]. Eur J Radiol, 2019, 110:97-104. DOI: 10.1016/j.ejrad.2018.11.021.
|
[10] |
|
[11] |
|
[12] |
DEGNIM A C, SCOW J S, HOSKIN T L, et al. Randomized controlled trial to reduce bacterial colonization of surgical drains after breast and axillary operations[J]. Ann Surg, 2013, 258(2):240-247. DOI: 10.1097/SLA.0b013e31828c0b85.
|
[13] |
DENT R, TRUDEAU M, PRITCHARD K I, et al. Triple-negative breast cancer:clinical features and patterns of recurrence[J]. Clin Cancer Res, 2007, 13(15 Pt 1):4429-4434. DOI: 10.1158/1078-0432.CCR-06-3045.
|
[14] |
|
[15] |
ZONG Q Q, DENG J, GE W L, et al. Establishment of simple nomograms for predicting axillary lymph node involvement in early breast cancer[J]. Cancer Manag Res, 2020, 12:2025-2035. DOI: 10.2147/CMAR.S241641.
|
[16] |
CUNNINGHAM J E, JURJ A L, OMAN L, et al. Is risk of axillary lymph node metastasis associated with proximity of breast cancer to the skin?[J]. Breast Cancer Res Treat, 2006, 100(3):319-328. DOI: 10.1007/s10549-006-9256-2.
|
[17] |
LIU H, XU G, YAO M H, et al. Association of conventional ultrasound,elastography and clinicopathological factors with axillary lymph node status in invasive ductal breast carcinoma with sizes >10 mm[J]. Oncotarget, 2018, 9(2):2819-2828. DOI: 10.18632/oncotarget.18969.
|
[18] |
LI X L, XU H X, LI D D, et al. A risk model based on ultrasound,ultrasound elastography,and histologic parameters for predicting axillary lymph node metastasis in breast invasive ductal carcinoma[J]. Sci Rep, 2017, 7(1):3029. DOI: 10.1038/s41598-017-03582-3.
|
[19] |
姚东. 乳腺癌发生腋窝淋巴结转移与多项超声特征的关系[D]. 衡阳:南华大学,2019.
|
[20] |
BARTOLOTTA T V, ORLANDO A A M, SPATAFORA L, et al. S-Detect characterization of focal breast lesions according to the US BI RADS lexicon:a pictorial essay[J]. J Ultrasound, 2020, 23(2):207-215. DOI: 10.1007/s40477-020-00447-w.
|
[21] |
ZHAO C Y, XIAO M S, LIU H, et al. Reducing the number of unnecessary biopsies of US-BI-RADS 4a lesions through a deep learning method for residents-in-training:a cross-sectional study[J]. BMJ Open, 2020, 10(6):e035757. DOI: 10.1136/bmjopen-2019-035757.
|
[22] |
LIU Y, WANG Y, WANG Y X, et al. Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network:a multicentre,retrospective cohort study[J]. EClinicalMedicine, 2022, 52:101562. DOI: 10.1016/j.eclinm.2022.101562.
|
[23] |
QIU X Y, JIANG Y L, ZHAO Q Y, et al. Could ultrasound-based radiomics noninvasively predict axillary lymph node metastasis in breast cancer?[J]. J Ultrasound Med, 2020, 39(10):1897-1905. DOI: 10.1002/jum.15294.
|
[24] |
|
[25] |
|
[26] |
ZHENG X Y, YAO Z, HUANG Y N, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11(1):1236. DOI: 10.1038/s41467-020-15027-z.
|
[27] |
YI C B, DING Z Y, DENG J, et al. Combining the ultrasound features of primary tumor and axillary lymph nodes can reduce false-negative rate during the prediction of high axillary node burden in BI-RADS category 4 or 5 breast cancer lesions[J]. Ultrasound Med Biol, 2020, 46(8):1941-1948. DOI: 10.1016/j.ultrasmedbio.2020.04.003.
|
[28] |
ZHAO Q, SUN J W, ZHOU H, et al. Pre-operative conventional ultrasound and sonoelastography evaluation for predicting axillary lymph node metastasis in patients with malignant breast lesions[J]. Ultrasound Med Biol, 2018, 44(12):2587-2595. DOI: 10.1016/j.ultrasmedbio.2018.07.017.
|
[29] |
ZHU A Q, LI X L, AN L W, et al. Predicting axillary lymph node metastasis in patients with breast invasive ductal carcinoma with negative axillary ultrasound results using conventional ultrasound and contrast-enhanced ultrasound[J]. J Ultrasound Med, 2020, 39(10):2059-2070. DOI: 10.1002/jum.15314.
|
[30] |
兰梦. 声触诊组织成像定量技术与常规超声在乳腺癌腋窝淋巴结良恶性诊断中的价值[D]. 济南:山东第一医科大学,2019.
|