[1] |
GRADISHAR W J, MORAN M S, ABRAHAM J, et al. Breast cancer,version 3.2022,NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(6):691-722. DOI: 10.6004/jnccn.2022.0030.
|
[2] |
SPRING L M, FELL G, ARFE A, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival:a comprehensive Meta-analysis[J]. Clin Cancer Res,2020,26(12):2838-2848.
|
[3] |
AGARWAL R, UNNIKRISHNAN U G, KEECHILAT P, et al. Pathological complete response in locally advanced breast cancer after neoadjuvant chemotherapy:survival outcome and its relevance as a surrogate end point[J]. South Asian Journal of Cancer, 2020, 9(3):136-140. DOI: 10.1055/s-0040-1721238.
|
[4] |
TALEGHAMAR H, ALI JALALIFAR S, CZARNOTA G J, et al. Deep learning of quantitative ultrasound multi-parametric images at pre-treatment to predict breast cancer response to chemotherapy[J]. Sci Rep,2022,12(1):2244.
|
[5] |
MASSAFRA R, COMES M C, BOVE S, et al. Robustness evaluation of a deep learning model on sagittal and axial breast DCE-MRIs to predict pathological complete response to neoadjuvant chemotherapy[J]. J Pers Med,2022,12(6):953.
|
[6] |
DAMMU H, REN T, DUONG T Q. Deep learning prediction of pathological complete response,residual cancer burden,and progression-free survival in breast cancer patients[J]. PLoS One, 2023, 18(1):e0280148. DOI: 10.1371/journal.pone.0280148.
|
[7] |
SKARPING I, LARSSON M, FöRNVIK D. Analysis of mammograms using artificial intelligence to predict response to neoadjuvant chemotherapy in breast cancer patients:proof of concept[J]. Eur Radiol,2022,32(5):3131-3141.
|
[8] |
CAMPANELLA G, HANNA M G, GENESLAW L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019, 25(8):1301-1309. DOI: 10.1038/s41591-019-0508-1.
|
[9] |
MERCAN E, MEHTA S, BARTLETT J, et al. Assessment of machine learning of breast pathology structures for automated differentiation of breast cancer and high-risk proliferative lesions[J]. JAMA Network Open,2019,2(8):e198777.
|
[10] |
WOERL A C, ECKSTEIN M, GEIGER J, et al. Deep learning predicts molecular subtype of muscle-invasive bladder cancer from conventional histopathological slides[J]. Eur Urol, 2020, 78(2):256-264. DOI: 10.1016/j.eururo.2020.04.023.
|
[11] |
SKREDE O J, DE RAEDT S, KLEPPE A, et al. Deep learning for prediction of colorectal cancer outcome:a discovery and validation study[J]. Lancet,2020,395(10221):350-360.
|
[12] |
ZHAO K, LI Z H, YAO S, et al. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer[J]. EBioMedicine, 2020, 61:103054. DOI: 10.1016/j.ebiom.2020.103054.
|
[13] |
LUCAS M, JANSEN I, VAN LEEUWEN T G, et al. Deep learning-based recurrence prediction in patients with non-muscle-invasive bladder cancer[J]. Eur Urol Focus, 2022, 8(1):165-172. DOI: 10.1016/j.euf.2020.12.008.
|
[14] |
LI F L, YANG Y Q, WEI Y N, et al. Deep learning-based predictive biomarker of pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer[J]. J Transl Med,2021,19(1):348.
|
[15] |
OGSTON K N, MILLER I D, PAYNE S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy:prognostic significance and survival[J]. Breast(Edinburgh,Scotland),2003,12(5):320-327.
|
[16] |
ILSE M, TOMCZAK J M, WELLING M. Attention-based deep multiple instance learning[Z]. International conference on machine learning,2018:2127-2136.
|
[17] |
WU Y N. Cross entropy[M]. Computer Vision:A Reference Guide. Boston:Springer International Publishing,2021:225-226.
|
[18] |
THEODORIDIS S. Stochastic Gradient Descent[M]. Machine learning. Oxford:Academic Press,2015:161-231.
|
[19] |
LOSHCHILOV I, HUTTER F. SGDR:Stochastic gradient descent with warm restarts[Z]. International Conference on Learning Representations,2017:1-16.
|
[20] |
GOORTS B, VAN NIJNATTEN T J A, DE MUNCK L, et al. Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients[J]. Breast Cancer Res Treat, 2017, 163(1):83-91. DOI: 10.1007/s10549-017-4155-2.
|
[21] |
XIAO Y, DING J H, MA D C, et al. Predicting pathological complete response in neoadjuvant dual blockade with trastuzumab and pertuzumab in HER2 gene amplified breast cancer[J]. Front Immunol, 2022, 13:877825. DOI: 10.3389/fimmu.2022.877825.
|
[22] |
CHEN P X, WANG C, LU R L, et al. Multivariable models based on baseline imaging features and clinicopathological characteristics to predict breast pathologic response after neoadjuvant chemotherapy in patients with breast cancer[J]. Breast Care(Basel,Switzerland),2022,17(3):306-315.
|
[23] |
DENKERT C, VON MINCKWITZ G, DARB-ESFAHANI S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer:A pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol, 2018, 19(1):40-50. DOI: 10.1016/s1470-2045(17)30904-x.
|
[24] |
HAQUE W, VERMA V, HATCH S, et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy[J]. Breast Cancer Res Treat,2018,170(3):559-567.
|
[25] |
METI N, SAEDNIA K, LAGREE A, et al. Machine learning frameworks to predict neoadjuvant chemotherapy response in breast cancer using clinical and pathological features[J]. JCO Clin Cancer Inform, 2021, 5:66-80. DOI: 10.1200/cci.20.00078.
|
[26] |
徐春燕,谢嘉伟,杨春霞,等. 基于病理穿刺切片组织形态学分析的乳腺癌新辅助化疗疗效预测[J]. 四川大学学报(医学版), 2021, 52(2):279-285. DOI: 10.12182/20210360505.
|