| [1] | GBD Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories,1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet ,2020 ,396 (10258):1204-1222. DOI:10.1016/S0140-6736(20)30925-9 . | 
																													
																						| [2] |  | 
																													
																						| [3] |  | 
																													
																						| [4] | RANSTAM J, COOK J A , COLLINS G S . Clinical prediction models[J]. Br J Surg ,2016 ,103 (13):1886. DOI:10.1002/bjs.10242 . | 
																													
																						| [5] |  | 
																													
																						| [6] |  | 
																													
																						| [7] |  | 
																													
																						| [8] |  | 
																													
																						| [9] |  | 
																													
																						| [10] |  | 
																													
																						| [11] | 黄钜明. "辨质论治"结合慢病管理干预动脉粥样硬化的临床疗效分析[D]. 广州:广州中医药大学,2016. | 
																													
																						| [12] | 北京高血压防治协会,北京糖尿病防治协会,北京慢性病防治与健康教育研究会,等. 基层心血管病综合管理实践指南2020[J]. 中国医学前沿杂志(电子版) ,2020 ,12 (8):1-73. DOI:10.12037/YXQY.2020.08-01 . | 
																													
																						| [13] | YANG X L, LI J X , HU D S ,et al. Predicting the 10-year risks of atherosclerotic cardiovascular disease in Chinese population:the china-PAR project (prediction for ASCVD risk in China)[J]. Circulation ,2016 ,134 (19):1430-1440. DOI:10.1161/CIRCULATIONAHA.116.022367 . | 
																													
																						| [14] | RILEY R D, ENSOR J , SNELL K I E ,et al. Calculating the sample size required for developing a clinical prediction model[J]. BMJ ,2020 ,368 :m441. DOI:10.1136/bmj.m441 . | 
																													
																						| [15] |  | 
																													
																						| [16] | STEYERBERG E W. Clinical prediction models:a practical approach to development,validation,and updating [M]. Switzerland:Springer Nature,2019 :37-57. DOI:10.1007/978-3-030-16399-0 . | 
																													
																						| [17] | HEMANN B A, BIMSON W F , TAYLOR A J . The Framingham Risk Score:an appraisal of its benefits and limitations[J]. Am Heart Hosp J ,2007 ,5 (2):91-96. DOI:10.1111/j.1541-9215.2007.06350.x . | 
																													
																						| [18] | 韩泽森,来利红. 冠状动脉粥样硬化性心脏病临床预测模型研究现状概述[J]. 心血管病学进展,2020,41(6):638-641. | 
																													
																						| [19] | WOLFF R F, MOONS K G M , RILEY R D ,et al. PROBAST:a tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med ,2019 ,170 (1):51-58. DOI:10.7326/M18-1376 . | 
																													
																						| [20] | 吴锡桂,赖声汉,高红,等. 首都钢铁公司988名男性工人冠心病危险因素的多元分析[J]. 中华心血管病杂志,1983,11(1):28-32. | 
																													
																						| [21] | LIANG X, WANG Q , JIANG Z Q ,et al. Clinical research linking Traditional Chinese Medicine constitution types with diseases:a literature review of 1639 observational studies[J]. Chung I Tsa Chih Ying Wen Pan ,2020 ,40 (4):690-702. DOI:10.19852/j.cnki.jtcm.2020.04.019 . | 
																													
																						| [22] | FRANKLIN J. The elements of statistical learning:data mining,inference and prediction[J]. Math Intell ,2005 ,27 (2):83-85. DOI:10.1007/BF02985802 . | 
																													
																						| [23] | MAHMOOD S S, LEVY D , VASAN R S ,et al. The Framingham Heart Study and the epidemiology of cardiovascular disease:a historical perspective[J]. Lancet ,2014 ,383 (9921):999-1008. DOI:10.1016/S0140-6736(13)61752-3 . | 
																													
																						| [24] | QUESADA J A, LOPEZ-PINEDA A , GIL-GUILLÉN V F ,et al. Machine learning to predict cardiovascular risk[J]. Int J Clin Pract ,2019 ,73 (10):e13389. DOI:10.1111/ijcp.13389 . | 
																													
																						| [25] | WU Y F, FANG Y . Stroke prediction with machine learning methods among older Chinese[J]. Int J Environ Res Public Heath ,2020 ,17 (6):1828. DOI:10.3390/ijerph17061828 . | 
																													
																						| [26] | DEBRAY T P, DAMEN J A , SNELL K I ,et al. A guide to systematic review and meta-analysis of prediction model performance[J]. BMJ ,2017 ,356 :i6460. DOI:10.1136/bmj.i6460 . | 
																													
																						| [27] | MOONS K G, KENGNE A P , WOODWARD M ,et al. Risk prediction models:I. Development,internal validation,and assessing the incremental value of a new (bio)marker[J]. Heart ,2012 ,98 (9):683-690. DOI:10.1136/heartjnl-2011-301246 . | 
																													
																						| [28] | STEYERBERG E W, PENCINA M J , LINGSMA H F ,et al. Assessing the incremental value of diagnostic and prognostic markers:a review and illustration[J]. Eur J Clin Invest ,2012 ,42 (2):216-228. DOI:10.1111/j.1365-2362.2011.02562.x . | 
																													
																						| [29] |  | 
																													
																						| [30] | COOK N R. Quantifying the added value of new biomarkers:how and how not[J]. Diagn Progn Res ,2018 ,2 :14. DOI:10.1186/s41512-018-0037-2 . | 
																													
																						| [31] | PICKERING J W, ENDRE Z H . New metrics for assessing diagnostic potential of candidate biomarkers[J]. Clin J Am Soc Nephrol ,2012 ,7 (8):1355-1364. DOI:10.2215/CJN.09590911 . |