[75] |
EBRAHIMI V, RASTEGAR-MOGHADDAM S H, MOHAMMADIPOUR A. Therapeutic potentials of microRNA-126 in cerebral ischemia[J]. Mol Neurobiol, 2023, 60(4):2062-2069. DOI: 10.1007/s12035-022-03197-4.
|
[76] |
RUAN L H, WANG B, ZHUGE Q C,et al. Coupling of neurogenesis and angiogenesis after ischemic stroke[J]. Brain Res, 2015, 1623:166-173. DOI: 10.1016/j.brainres.2015.02.042.
|
[77] |
PAN J J, QU M J, LI Y F,et al. MicroRNA-126-3p /-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion[J]. Stroke, 2020, 51(2):619-627. DOI: 10.1161/STROKEAHA.119.027531.
|
[78] |
JIN F Q, XING J. Circulating miR-126 and miR-130a levels correlate with lower disease risk,disease severity,and reduced inflammatory cytokine levels in acute ischemic stroke patients[J]. Neurol Sci,2018,39(10):1757-1765.
|
[79] |
QI R G, LIU H H, LIU C L,et al. Expression and short-term prognostic value of miR-126 and miR-182 in patients with acute stroke[J]. Exp Ther Med,2020,19(1):527-534.
|
[80] |
POZNIAK T, SHCHARBIN D, BRYSZEWSKA M. Circulating microRNAs in medicine[J]. Int J Mol Sci, 2022, 23(7):3996. DOI: 10.3390/ijms23073996.
|
[81] |
WANG Q W, CHEN Y H, MENG L B,et al. A novel perspective on ischemic stroke:a review of exosome and noncoding RNA studies[J]. Brain Sci,2022,12(8):1000.
|
[82] |
HERMANN D M, ZECHARIAH A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling[J]. J Cereb Blood Flow Metab, 2009, 29(10):1620-1643. DOI: 10.1038/jcbfm.2009.100.
|
[83] |
ZHANG L, GRAF I, KUANG Y Y,et al. Neural progenitor cell-derived extracellular vesicles enhance blood-brain barrier integrity by NF-κB(nuclear factor-κB)-dependent regulation of ABCB1(ATP-binding cassette transporter B1)in stroke mice[J]. Arterioscler Thromb Vasc Biol,2021,41(3):1127-1145.
|
[84] |
CUN Y D, JIN Y J, WU D L,et al. Exosome in crosstalk between inflammation and angiogenesis:a potential therapeutic strategy for stroke[J]. Mediators Inflamm,2022,2022:7006281.
|
[85] |
YANG J, HAO J L, LIN Y P,et al. Profile and functional prediction of plasma exosome-derived CircRNAs from acute ischemic stroke patients[J]. Front Genet,2022,13:810974.
|
[86] |
JI Q H, JI Y H, PENG J W,et al. Increased brain-specific miR-9 and miR-124 in the serum exosomes of acute ischemic stroke patients[J]. PLoS One,2016,11(9):e0163645.
|
[87] |
LEE E C, HA T W, LEE D H,et al. Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment[J]. Int J Mol Sci, 2022, 23(15):8367. DOI: 10.3390/ijms23158367.
|
[88] |
JIANG Y B, HE R Y, SHI Y J,et al. Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS[J]. Life Sci,2020,256:117987.
|
[1] |
MCBRIDE K L, WHITE C L, SOURIAL R,et al. Postdischarge nursing interventions for stroke survivors and their families[J]. J Adv Nurs, 2004, 47(2):192-200. DOI: 10.1111/j.1365-2648.2004.03078.x.
|
[2] |
GBD Stroke Collaborators. Global,regional,and national burden of stroke,1990-2016:a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5):439-458. DOI: 10.1016/S1474-4422(19)30034-1.
|
[3] |
MA Q F, LI R, WANG L J,et al. Temporal trend and attributable risk factors of stroke burden in China,1990-2019:an analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2021, 6(12):e897-906. DOI: 10.1016/S2468-2667(21)00228-0.
|
[4] |
MARKLE-REID M, ORRIDGE C, WEIR R,et al. Interprofessional stroke rehabilitation for stroke survivors using home care[J]. Can J Neurol Sci, 2011, 38(2):317-334. DOI: 10.1017/s0317167100011537.
|
[5] |
|
[6] |
LIPPI G, TARGHER G, MONTAGNANA M,et al. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients[J]. Arch Pathol Lab Med, 2009, 133(4):628-632. DOI: 10.5858/133.4.628.
|
[7] |
CAI S K, LI Y, SUN B,et al. Red blood cell distribution width combined with age as a predictor of acute ischemic stroke in stable COPD patients[J]. Front Neurol, 2023, 14:1165181. DOI: 10.3389/fneur.2023.1165181.
|
[8] |
THOMPSON W G, MEOLA T, LIPKIN M Jr,et al. Red cell distribution width,mean corpuscular volume,and transferrin saturation in the diagnosis of iron deficiency[J]. Arch Intern Med,1988,148(10):2128-2130.
|
[9] |
HONG R H, ZHU J, LI Z Z,et al. Red blood cell distribution width is associated with neuronal damage in acute ischemic stroke[J]. Aging, 2020, 12(10):9855-9867. DOI: 10.18632/aging.103250.
|
[10] |
XUE J, ZHANG D, ZHANG X G,et al. Red cell distribution width is associated with stroke severity and unfavorable functional outcomes in ischemic stroke[J]. Front Neurol, 2022, 13:938515. DOI: 10.3389/fneur.2022.938515.
|
[11] |
LI M Q, WANG L M, ZHU X M,et al. Dose-response relationship between red blood cell distribution width and In-hospital mortality in oldest old patients with acute ischemic stroke[J]. Gerontology, 2023, 69(4):379-385. DOI: 10.1159/000527504.
|
[12] |
SHEN Z, HUANG Y, ZHOU Y,et al. Association between red blood cell distribution width and ischemic stroke recurrence in patients with acute ischemic stroke:a 10-years retrospective cohort analysis[J]. Aging, 2023, 15(8):3052-3063. DOI: 10.18632/aging.204657.
|
[13] |
XIE K H, LIU L L, LIANG Y R,et al. Red cell distribution width:a novel predictive biomarker for stroke risk after transient ischaemic attack[J]. Ann Med, 2022, 54(1):1167-1177. DOI: 10.1080/07853890.2022.2059558.
|
[14] |
SILVESTRE-ROIG C, BRASTER Q, ORTEGA-GOMEZ A,et al. Neutrophils as regulators of cardiovascular inflammation[J]. Nat Rev Cardiol, 2020, 17(6):327-340. DOI: 10.1038/s41569-019-0326-7.
|
[15] |
CAI W, WANG J L, HU M Y,et al. All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling[J]. J Neuroinflammation, 2019, 16(1):175. DOI: 10.1186/s12974-019-1557-6.
|
[16] |
BUI T A, JICKLING G C, WINSHIP I R. Neutrophil dynamics and inflammaging in acute ischemic stroke:a transcriptomic review[J]. Front Aging Neurosci, 2022, 14:1041333. DOI: 10.3389/fnagi.2022.1041333.
|
[17] |
CAI W, LIU S X, HU M Y,et al. Functional dynamics of neutrophils after ischemic stroke[J]. Transl Stroke Res, 2020, 11(1):108-121. DOI: 10.1007/s12975-019-00694-y.
|
[18] |
GONG P Y, XIE Y, JIANG T,et al. Neutrophil-lymphocyte ratio predicts post-thrombolysis early neurological deterioration in acute ischemic stroke patients[J]. Brain Behav, 2019, 9(10):e01426. DOI: 10.1002/brb3.1426.
|
[19] |
INOUE Y, FUJISHIMA M, ONO M,et al. Clinical significance of the neutrophil-to-lymphocyte ratio in oligometastatic breast cancer[J]. Breast Cancer Res Treat, 2022, 196(2):341-348. DOI: 10.1007/s10549-022-06726-w.
|
[20] |
ZAHOREC R. Neutrophil-to-lymphocyte ratio,past,present and future perspectives[J]. Bratisl Lek Listy, 2021, 122(7):474-488. DOI: 10.4149/BLL_2021_078.
|
[21] |
KOCATURK O, BESLI F, GUNGOREN F,et al. The relationship among neutrophil to lymphocyte ratio,stroke territory,and 3-month mortality in patients with acute ischemic stroke[J]. Neurol Sci, 2019, 40(1):139-146. DOI: 10.1007/s10072-018-3604-y.
|
[22] |
HUANG J M, LIAO F Q, LUO Y T,et al. Neutrophil-to-lymphocyte ratio at admission is a risk factor for in-hospital gastrointestinal bleeding in acute ischemic stroke patients after dual antiplatelet therapy:a case control study[J]. J Stroke Cerebrovasc Dis, 2023, 32(10):107325. DOI: 10.1016/j.jstrokecerebrovasdis.2023.107325.
|
[23] |
XU C X, CAI L R, YI T,et al. Neutrophil-to-lymphocyte ratio is associated with stroke progression and functional outcome in patients with ischemic stroke[J]. Brain Behav, 2023, 13(11):e3261. DOI: 10.1002/brb3.3261.
|
[24] |
BURKARD P, VÖGTLE T, NIESWANDT B. Platelets in thrombo-inflammation:concepts,mechanisms,and therapeutic strategies for ischemic stroke[J]. Hamostaseologie, 2020, 40(2):153-164. DOI: 10.1055/a-1151-9519.
|
[25] |
TSALTA-MLADENOV M E, ANDONOVA S P. Peripheral blood cell count ratios as a predictor of poor functional outcome in patients with acute ischemic stroke[J]. Neurol Res, 2024, 46(3):213-219. DOI: 10.1080/01616412.2023.2270336.
|
[26] |
ROMAN-FILIP C, CATANĂ M G, MIHĂILĂ R G. Prognostic markers for ischemic stroke - are they truly reliable?[J]. Med Pharm Rep, 2023, 96(1):65-70. DOI: 10.15386/mpr-2365.
|
[27] |
WEN H J, WANG N, LV M,et al. The early predictive value of platelet-to-lymphocyte ratio to hemorrhagic transformation of young acute ischemic stroke[J]. Asian Biomed, 2023, 17(6):267-272. DOI: 10.2478/abm-2023-0069.
|
[28] |
LI T Y W, SIA C H, CHAN B P L,et al. Neutrophil-lymphocyte and platelet-lymphocyte ratios are associated with recurrent ischemic stroke in patients with embolic stroke of undetermined source[J]. J Stroke, 2022, 24(3):421-424. DOI: 10.5853/jos.2022.00486.
|
[29] |
SUN Y Y, WANG M Q, WANG Y,et al. Platelet-to-lymphocyte ratio at 24h after thrombolysis is a prognostic marker in acute ischemic stroke patients[J]. Front Immunol, 2022, 13:1000626. DOI: 10.3389/fimmu.2022.1000626.
|
[30] |
ZHANG L, WEI W, AI X Y,et al. Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway[J]. Cell Death Dis, 2021, 12(11):1068. DOI: 10.1038/s41419-021-04363-7.
|
[31] |
GURUSWAMY R, ELALI A. Complex roles of microglial cells in ischemic stroke pathobiology:new insights and future directions[J]. Int J Mol Sci, 2017, 18(3):496. DOI: 10.3390/ijms18030496.
|
[32] |
GAO X, SU G, CHAI M,et al. Research progress on mechanisms of ischemic stroke:regulatory pathways involving Microglia[J]. Neurochem Int, 2024, 172:105656. DOI: 10.1016/j.neuint.2023.105656.
|
[33] |
KOYAMA R, SHICHITA T. Glial roles in sterile inflammation after ischemic stroke[J]. Neurosci Res, 2023, 187:67-71. DOI: 10.1016/j.neures.2022.10.002.
|
[34] |
CANDELARIO-JALIL E, DIJKHUIZEN R M, MAGNUS T. Neuroinflammation,stroke,blood-brain barrier dysfunction,and imaging modalities[J]. Stroke, 2022, 53(5):1473-1486. DOI: 10.1161/STROKEAHA.122.036946.
|
[35] |
SHERIFF A, KAYSER S, BRUNNER P,et al. C-reactive protein triggers cell death in ischemic cells[J]. Front Immunol, 2021, 12:630430. DOI: 10.3389/fimmu.2021.630430.
|
[36] |
PU Y T, LI S Y, WANG L X,et al. Association between high-sensitivity C-reactive protein and prognosis of patients with acute cerebral infarction[J]. Neuropsychiatr Dis Treat, 2022, 18:1771-1778. DOI: 10.2147/NDT.S376440.
|
[37] |
CHEN L T, WANG M, YANG C R,et al. The role of high-sensitivity C-reactive protein serum levels in the prognosis for patients with stroke:a meta-analysis[J]. Front Neurol, 2023, 14:1199814. DOI: 10.3389/fneur.2023.1199814.
|
[38] |
CHENG X D, WANG D Z, ZHANG Q,et al. Predictive role of pre-thrombolytic hs-CRP on the safety and efficacy of intravenous thrombolysis in acute ischemic stroke[J]. BMC Neurol, 2023, 23(1):244. DOI: 10.1186/s12883-023-03291-7.
|
[39] |
YANG C J, HAWKINS K E, DORÉ S,et al. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke[J]. Am J Physiol Cell Physiol, 2019, 316(2):C135-153. DOI: 10.1152/ajpcell.00136.2018.
|
[40] |
YUAN R Z, TAN S, WANG D R,et al. Predictive value of plasma matrix metalloproteinase-9 concentrations for spontaneous haemorrhagic transformation in patients with acute ischaemic stroke:a cohort study in Chinese patients[J]. J Clin Neurosci, 2018, 58:108-112. DOI: 10.1016/j.jocn.2018.09.014.
|
[41] |
KRISHNAMOORTHY S, SYLAJA P N, SREEDHARAN S E,et al. Biomarkers predict hemorrhagic transformation and stroke severity after acute ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2023, 32(1):106875. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106875.
|
[42] |
LI Y J, HAN X Y, LUO S B,et al. Predictive value of longitudinal changes of serum matrix metalloproteinase-9 and brain-derived neurotrophic factor in acute ischemic stroke[J]. Front Aging Neurosci, 2022, 14:952038. DOI: 10.3389/fnagi.2022.952038.
|
[43] |
KANG S J, NARAZAKI M, METWALLY H,et al. Historical overview of the interleukin-6 family cytokine[J]. J Exp Med, 2020, 217(5):e20190347. DOI: 10.1084/jem.20190347.
|
[44] |
GU H Q, YANG K X, LI J J,et al. Mediation effect of stroke recurrence in the association between post-stroke interleukin-6 and functional disability[J]. CNS Neurosci Ther, 2023, 29(11):3579-3587. DOI: 10.1111/cns.14289.
|
[45] |
SHAAFI S, SHARIFIPOUR E, RAHMANIFAR R,et al. Interleukin-6,a reliable prognostic factor for ischemic stroke[J]. Iran J Neurol,2014,13(2):70-76.
|
[46] |
LI X M, LIN S Y, CHEN X L,et al. The prognostic value of serum cytokines in patients with acute ischemic stroke[J]. Aging Dis, 2019, 10(3):544-556. DOI: 10.14336/AD.2018.0820.
|
[47] |
MECHTOUFF L, BOCHATON T, PACCALET A,et al. Association of interleukin-6 levels and futile reperfusion after mechanical thrombectomy[J]. Neurology, 2021, 96(5):e752-757. DOI: 10.1212/WNL.0000000000011268.
|
[48] |
XUE Y M, ZENG X W, TU W J,et al. Tumor necrosis factor-α:the next marker of stroke[J]. Dis Markers, 2022, 2022:2395269. DOI: 10.1155/2022/2395269.
|
[49] |
MARTÍNEZ-SÁNCHEZ P, GUTIÉRREZ-FERNÁNDEZ M, FUENTES B,et al. Biochemical and inflammatory biomarkers in ischemic stroke:translational study between humans and two experimental rat models[J]. J Transl Med,2014,12:220.
|
[50] |
CASTELLANOS M, CASTILLO J, GARCÍA M M,et al. Inflammation-mediated damage in progressing lacunar infarctions:a potential therapeutic target[J]. Stroke, 2002, 33(4):982-987. DOI: 10.1161/hs0402.105339.
|
[51] |
ZHANG S, HUANG S C, HU D J,et al. Biological properties and clinical significance of lipoprotein-associated phospholipase A2 in ischemic stroke[J]. Cardiovasc Ther,2022,2022:3328574.
|
[52] |
JIANG X, XU J, HAO X W,et al. Elevated lipoprotein(a)and lipoprotein-associated phospholipase A2 are associated with unfavorable functional outcomes in patients with ischemic stroke[J]. J Neuroinflammation, 2021, 18(1):307. DOI: 10.1186/s12974-021-02359-w.
|
[53] |
LI X Y, XU L, XU Z X. The diagnostic and prognostic performance of Lp-PLA2 in acute ischemic stroke[J]. Med Clin, 2021, 156(9):437-443. DOI: 10.1016/j.medcli.2020.11.034.
|
[54] |
GONZALO-GOBERNADO R, AYUSO M I, SANSONE L,et al. Neuroprotective effects of diets containing olive oil and DHA/EPA in a mouse model of cerebral ischemia[J]. Nutrients, 2019, 11(5):1109. DOI: 10.3390/nu11051109.
|
[55] |
VENØ S K, SCHMIDT E B, BORK C S. Polyunsaturated fatty acids and risk of ischemic stroke[J]. Nutrients, 2019, 11(7):1467. DOI: 10.3390/nu11071467.
|
[56] |
LIN L, ZHENG S R, LAI J Q,et al. Omega-3 polyunsaturated fatty acids protect neurological function after traumatic brain injury by suppressing microglial transformation to the proinflammatory phenotype and activating exosomal NGF/TrkA signaling[J]. Mol Neurobiol, 2023, 60(10):5592-5606. DOI: 10.1007/s12035-023-03419-3.
|
[57] |
SUDA S, KATSUMATA T, OKUBO S,et al. Low serum n-3 polyunsaturated fatty acid/n-6 polyunsaturated fatty acid ratio predicts neurological deterioration in Japanese patients with acute ischemic stroke[J]. Cerebrovasc Dis, 2013, 36(5/6):388-393. DOI: 10.1159/000355683.
|
[58] |
SONG T J, CHO H J, CHANG Y,et al. Low plasma proportion of omega 3-polyunsaturated fatty acids predicts poor outcome in acute non-cardiogenic ischemic stroke patients[J]. J Stroke, 2015, 17(2):168-176. DOI: 10.5853/jos.2015.17.2.168.
|
[59] |
REINER M F, BAUMGARTNER P, WIENCIERZ A,et al. The omega-3 fatty acid eicosapentaenoic acid(EPA)correlates inversely with ischemic brain infarcts in patients with atrial fibrillation[J]. Nutrients, 2021, 13(2):651. DOI: 10.3390/nu13020651.
|
[60] |
SHOJIMA Y, UENO Y, TANAKA R,et al. Eicosapentaenoic-to-arachidonic acid ratio predicts mortality and recurrent vascular events in ischemic stroke patients[J]. J Atheroscler Thromb, 2020, 27(9):969-977. DOI: 10.5551/jat.52373.
|
[61] |
KADIR R R A, ALWJWAJ M, BAYRAKTUTAN U. MicroRNA:an emerging predictive,diagnostic,prognostic and therapeutic strategy in ischaemic stroke[J]. Cell Mol Neurobiol, 2022, 42(5):1301-1319. DOI: 10.1007/s10571-020-01028-5.
|
[62] |
|
[63] |
CAI Z Y, LI S, YU T C,et al. Non-coding RNA regulatory network in ischemic stroke[J]. Front Neurol, 2022, 13:820858. DOI: 10.3389/fneur.2022.820858.
|
[64] |
ZHOU J S, ZHANG J. Identification of miRNA-21 and miRNA-24 in plasma as potential early stage markers of acute cerebral infarction[J]. Mol Med Rep, 2014, 10(2):971-976. DOI: 10.3892/mmr.2014.2245.
|
[65] |
YAN H L, HUANG W X, RAO J,et al. MiR-21 regulates ischemic neuronal injury via the p53/Bcl-2/Bax signaling pathway[J]. Aging, 2021, 13(18):22242-22255. DOI: 10.18632/aging.203530.
|
[66] |
LOPEZ M S, MORRIS-BLANCO K C, LY N,et al. MicroRNA miR-21 decreases post-stroke brain damage in rodents[J]. Transl Stroke Res,2022,13(3):483-493.
|
[67] |
YUAN M, GUO Y S, ZHANG X X,et al. Diagnostic performance of miR-21,miR-124,miR-132,and miR-200b serums in post-stroke cognitive impairment patients[J]. Folia Neuropathol, 2022, 60(2):228-236. DOI: 10.5114/fn.2022.118187.
|
[68] |
HARTMANN P, SCHOBER A, WEBER C. Chemokines and microRNAs in atherosclerosis[J]. Cell Mol Life Sci, 2015, 72(17):3253-3266. DOI: 10.1007/s00018-015-1925-z.
|
[69] |
GAUDET A D, FONKEN L K, WATKINS L R,et al. MicroRNAs:roles in regulating neuroinflammation[J]. Neuroscientist,2018,24(3):221-245.
|
[70] |
ZINGALE V D, GUGLIANDOLO A, MAZZON E. MiR-155:an important regulator of neuroinflammation[J]. Int J Mol Sci, 2021, 23(1):90. DOI: 10.3390/ijms23010090.
|
[71] |
SHI Y, LI K, XU K,et al. MiR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways[J]. Eur Rev Med Pharmacol Sci, 2020, 24(3):1408-1419. DOI: 10.26355/eurrev_202002_20198.
|
[72] |
YANG Z, SHI X F, GAO Z D,et al. MiR-155-5p in extracellular vesicles derived from choroid plexus epithelial cells promotes autophagy and inflammation to aggravate ischemic brain injury in mice[J]. Oxid Med Cell Longev,2022,2022:8603427.
|
[73] |
ZHANG J K, LI Y, YU Z T,et al. OIP5-AS1 inhibits oxidative stress and inflammation in ischemic stroke through miR-155-5p/IRF2BP2 axis[J]. Neurochem Res, 2023, 48(5):1382-1394. DOI: 10.1007/s11064-022-03830-7.
|
[74] |
CHEN W, WANG L T, LIU Z P. MicroRNA-155 influences cell damage in ischemic stroke via TLR4/MYD88 signaling pathway[J]. Bioengineered,2021,12(1):2449-2458.
|