| [1] |
LIBBY P, RIDKER P M, MASERI A. Inflammation and atherosclerosis[J]. Circulation, 2002, 105(9): 1135-1143. DOI: 10.1161/hc0902.104353.
|
| [2] |
CRISTELL N, CIANFLONE D, DURANTE A, et al. High-sensitivity C-reactive protein is within normal levels at the very onset of first ST-segment elevation acute myocardial infarction in 41% of cases: a multiethnic case-control study[J]. J Am Coll Cardiol, 2011, 58(25): 2654-2661. DOI: 10.1016/j.jacc.2011.08.055.
|
| [3] |
HANSSON G K. Inflammation, atherosclerosis, and coronary artery disease[J]. N Engl J Med, 2005, 352(16): 1685-1695. DOI: 10.1056/NEJMra043430.
|
| [4] |
ZAIRIS M N, LYRAS A G, BIBIS G P, et al. Association of inflammatory biomarkers and cardiac troponin I with multifocal activation of coronary artery tree in the setting of non-ST-elevation acute myocardial infarction[J]. Atherosclerosis, 2005, 182(1): 161-167. DOI: 10.1016/j.atherosclerosis.2005.01.039.
|
| [5] |
HOFMANN U, FRANTZ S. Role of T-cells in myocardial infarction[J]. Eur Heart J, 2016, 37(11): 873-879. DOI: 10.1093/eurheartj/ehv639.
|
| [6] |
DÖRING Y, DRECHSLER M, SOEHNLEIN O, et al. Neutrophils in atherosclerosis: from mice to man[J]. Arterioscler Thromb Vasc Biol, 2015, 35(2): 288-295. DOI: 10.1161/ATVBAHA.114.303564.
|
| [7] |
|
| [8] |
PUHL S L, STEFFENS S. Neutrophils in post-myocardial infarction inflammation: damage vs. resolution?[J]. Front Cardiovasc Med, 2019, 6: 25. DOI: 10.3389/fcvm.2019.00025.
|
| [9] |
BOAG S E, DAS R, SHMELEVA E V, et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients[J]. J Clin Invest, 2015, 125(8): 3063-3076. DOI: 10.1172/JCI80055.
|
| [10] |
ONG S B, HERNÁNDEZ-RESÉNDIZ S, CRESPO-AVILAN G E, et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186: 73-87. DOI: 10.1016/j.pharmthera.2018.01.001.
|
| [11] |
LIU J, CAO X T. Cellular and molecular regulation of innate inflammatory responses[J]. Cell Mol Immunol, 2016, 13(6): 711-721. DOI: 10.1038/cmi.2016.58.
|
| [12] |
WEIRATHER J, HOFMANN U D W, BEYERSDORF N, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation[J]. Circ Res, 2014, 115(1): 55-67. DOI: 10.1161/CIRCRESAHA.115.303895.
|
| [13] |
KOLOGRIVOVA I, SHTATOLKINA M, SUSLOVA T, et al. Cells of the immune system in cardiac remodeling: main players in resolution of inflammation and repair after myocardial infarction[J]. Front Immunol, 2021, 12: 664457. DOI: 10.3389/fimmu.2021.664457.
|
| [14] |
BACI D, BOSI A, PARISI L, et al. Innate immunity effector cells as inflammatory drivers of cardiac fibrosis[J]. Int J Mol Sci, 2020, 21(19): 7165. DOI: 10.3390/ijms21197165.
|
| [15] |
LAWRENCE T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6): a001651. DOI: 10.1101/cshperspect.a001651.
|
| [16] |
LUCAS K, MAES M. Role of the Toll like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway[J]. Mol Neurobiol, 2013, 48(1): 190-204. DOI: 10.1007/s12035-013-8425-7.
|
| [17] |
XIAO L, MAGUPALLI V G, WU H. Cryo-EM structures of the active NLRP3 inflammasome disc[J]. Nature, 2023, 613(7944): 595-600. DOI: 10.1038/s41586-022-05570-8.
|
| [18] |
TIMMERS L, PASTERKAMP G, DE HOOG V C, et al. The innate immune response in reperfused myocardium[J]. Cardiovasc Res, 2012, 94(2): 276-283. DOI: 10.1093/cvr/cvs018.
|
| [19] |
MOSCHONAS I C, TSELEPIS A D. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis[J]. Atherosclerosis, 2019, 288: 9-16. DOI: 10.1016/j.atherosclerosis.2019.06.919.
|
| [20] |
GE L, ZHOU X, JI W J, et al. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy[J]. Am J Physiol Heart Circ Physiol, 2015, 308(5): H500-H509. DOI: 10.1152/ajpheart.00381.2014.
|
| [21] |
YING L, BENJANUWATTRA J, CHATTIPAKORN S C, et al. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury[J]. Acta Physiol (Oxf), 2021, 231(2): e13541. DOI: 10.1111/apha.13541.
|
| [22] |
XU W P, ZHANG L, ZHANG Y, et al. TRAF1 exacerbates myocardial ischemia reperfusion injury via ASK1-JNK/p38 signaling[J]. J Am Heart Assoc, 2019, 8(21): e012575. DOI: 10.1161/JAHA.119.012575.
|
| [23] |
KIM O S, PARK E J, JOE E H, et al. JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells[J]. J Biol Chem, 2002, 277(43): 40594-40601. DOI: 10.1074/jbc.M203885200.
|
| [24] |
GAO Y, ZHANG Y M, QIAN L J, et al. ANO1 inhibits cardiac fibrosis after myocardial infraction via TGF-β/smad3 pathway[J]. Sci Rep, 2017, 7(1): 2355. DOI: 10.1038/s41598-017-02585-4.
|
| [25] |
DEWALD O, ZYMEK P, WINKELMANN K, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts[J]. Circ Res, 2005, 96(8): 881-889. DOI: 10.1161/01.RES.0000163017.13772.3a.
|
| [26] |
KAIKITA K, HAYASAKI T, OKUMA T, et al. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction[J]. Am J Pathol, 2004, 165(2): 439-447. DOI: 10.1016/S0002-9440(10)63309-3.
|
| [27] |
FRANGOGIANNIS N G. Targeting galectin-3 in myocardial infarction: a unique opportunity for biomarker-guided therapy[J]. Cardiovasc Res, 2023, 119(15): 2495-2496. DOI: 10.1093/cvr/cvad156.
|
| [28] |
OPSTAD T B, SELJEFLOT I, BØHMER E, et al. MMP-9 and its regulators TIMP-1 and EMMPRIN in patients with acute ST-elevation myocardial infarction: a NORDISTEMI substudy[J]. Cardiology, 2018, 139(1): 17-24. DOI: 10.1159/000481684.
|
| [29] |
TUDURACHI B S, ANGHEL L, TUDURACHI A, et al. Assessment of inflammatory hematological ratios (NLR, PLR, MLR, LMR and monocyte/HDL-cholesterol ratio) in acute myocardial infarction and particularities in young patients[J]. Int J Mol Sci, 2023, 24(18): 14378. DOI: 10.3390/ijms241814378.
|
| [30] |
ÇLELIK Ş, BAYKAN M, ERDÖUL C, et al. C-reactive protein as a risk factor for left ventricular thrombus in patients with acute myocardial infarction[J]. Clin Cardiol, 2001, 24(9): 615-619. DOI: 10.1002/clc.4960240909.
|
| [31] |
FUCÀ G, GUARINI V, ANTONIOTTI C, et al. The Pan-Immune-Inflammation Value is a new prognostic biomarker in metastatic colorectal cancer: results from a pooled-analysis of the Valentino and TRIBE first-line trials[J]. Br J Cancer, 2020, 123(3): 403-409. DOI: 10.1038/s41416-020-0894-7.
|
| [32] |
JIANG D S, BIAN T T, SHEN Y B, et al. Association between admission systemic immune-inflammation index and mortality in critically ill patients with sepsis: a retrospective cohort study based on MIMIC-IV database[J]. Clin Exp Med, 2023, 23(7): 3641-3650. DOI: 10.1007/s10238-023-01029-w.
|
| [33] |
ZHENG T T, LUO C D, XU S N, et al. Association of the systemic immune-inflammation index with clinical outcomes in acute myocardial infarction patients with hypertension[J]. BMC Immunol, 2025, 26(1): 10. DOI: 10.1186/s12865-025-00690-y.
|
| [34] |
ESENBOĞA K, KURTUL A, YAMANTÜRK Y Y, et al. Systemic immune-inflammation index predicts no-reflow phenomenon after primary percutaneous coronary intervention[J]. Acta Cardiol, 2022, 77(1): 59-65. DOI: 10.1080/00015385.2021.1884786.
|
| [35] |
SHAH N, PARIKH V, PATEL N, et al. Neutrophil lymphocyte ratio significantly improves the Framingham risk score in prediction of coronary heart disease mortality: insights from the National Health and Nutrition Examination Survey-Ⅲ[J]. Int J Cardiol, 2014, 171(3): 390-397. DOI: 10.1016/j.ijcard.2013.12.019.
|
| [36] |
DENTALI F, NIGRO O, SQUIZZATO A, et al. Impact of neutrophils to lymphocytes ratio on major clinical outcomes in patients with acute coronary syndromes: a systematic review and meta-analysis of the literature[J]. Int J Cardiol, 2018, 266: 31-37. DOI: 10.1016/j.ijcard.2018.02.116.
|
| [37] |
CHEN Y, CHEN S Y, HAN Y Y, et al. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio are important indicators for predicting in-hospital death in elderly AMI patients[J]. J Inflamm Res, 2023, 16: 2051-2061. DOI: 10.2147/JIR.S411086.
|
| [38] |
ADAMSTEIN N H, MACFADYEN J G, ROSE L M, et al. The neutrophil-lymphocyte ratio and incident atherosclerotic events: analyses from five contemporary randomized trials[J]. Eur Heart J, 2021, 42(9): 896-903. DOI: 10.1093/eurheartj/ehaa1034.
|
| [39] |
DONG G X, HUANG A Q, LIU L. Platelet-to-lymphocyte ratio and prognosis in STEMI: a meta-analysis[J]. Eur J Clin Invest, 2021, 51(3): e13386. DOI: 10.1111/eci.13386.
|
| [40] |
OYLUMLU M, OYLUMLU M, ARIK B, et al. Monocyte to high-density lipoprotein cholesterol and lymphocyte to monocyte ratios are predictors of in-hospital and long-term mortality in patients with acute coronary syndrome[J]. Int J Clin Pract, 2021, 75(5): e13973. DOI: 10.1111/ijcp.13973.
|
| [41] |
ZHAO Y Y, HAO C S, BO X W, et al. The prognostic value of admission lymphocyte-to-monocyte ratio in critically ill patients with acute myocardial infarction[J]. BMC Cardiovasc Disord, 2022, 22(1): 308. DOI: 10.1186/s12872-022-02745-z.
|
| [42] |
AZAB B, SHAH N, AKERMAN M, et al. Value of platelet/lymphocyte ratio as a predictor of all-cause mortality after non-ST-elevation myocardial infarction[J]. J Thromb Thrombolysis, 2012, 34(3): 326-334. DOI: 10.1007/s11239-012-0718-6.
|
| [43] |
SUN X P, LI J, ZHU W W, et al. Impact of platelet-to-lymphocyte ratio on clinical outcomes in patients with ST-segment elevation myocardial infarction[J]. Angiology, 2017, 68(4): 346-353. DOI: 10.1177/0003319716657258.
|
| [44] |
KURTUL A, YARLIOGLUES M, MURAT S N, et al. Usefulness of the platelet-to-lymphocyte ratio in predicting angiographic reflow after primary percutaneous coronary intervention in patients with acute ST-segment elevation myocardial infarction[J]. Am J Cardiol, 2014, 114(3): 342-347. DOI: 10.1016/j.amjcard.2014.04.045.
|
| [45] |
ZHANG Q, SI D Y, ZHANG Z F, et al. Value of the platelet-to-lymphocyte ratio in the prediction of left ventricular thrombus in anterior ST-elevation myocardial infarction with left ventricular dysfunction[J]. BMC Cardiovasc Disord, 2020, 20(1): 428. DOI: 10.1186/s12872-020-01712-w.
|
| [46] |
DOUGLAS E, MCMILLAN D C. Towards a simple objective framework for the investigation and treatment of cancer Cachexia: the Glasgow Prognostic Score[J]. Cancer Treat Rev, 2014, 40(6): 685-691. DOI: 10.1016/j.ctrv.2013.11.007.
|
| [47] |
WANG R, WEN X D, HUANG C, et al. Association between inflammation-based prognostic scores and in-hospital outcomes in elderly patients with acute myocardial infarction[J]. Clin Interv Aging, 2019, 14: 1199-1206. DOI: 10.2147/CIA.S214222.
|
| [48] |
JIA Y, LI D Z, CAO Y, et al. Inflammation-based Glasgow Prognostic Score in patients with acute ST-segment elevation myocardial infarction: a prospective cohort study[J]. Medicine (Baltimore), 2018, 97(50): e13615. DOI: 10.1097/MD.0000000000013615.
|
| [49] |
KASYMJANOVA G, MACDONALD N, AGULNIK J S, et al. The predictive value of pre-treatment inflammatory markers in advanced non-small-cell lung cancer[J]. Curr Oncol, 2010, 17(4): 52-58. DOI: 10.3747/co.v17i4.567.
|
| [50] |
PINATO D J, NORTH B V, SHARMA R. A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma: the prognostic nutritional index (PNI)[J]. Br J Cancer, 2012, 106(8): 1439-1445. DOI: 10.1038/bjc.2012.92.
|
| [51] |
YANG L, GUO J C, CHEN M, et al. Pan-immune-inflammatory value is superior to other inflammatory indicators in predicting inpatient major adverse cardiovascular events and severe coronary artery stenosis after percutaneous coronary intervention in STEMI patients[J]. Rev Cardiovasc Med, 2024, 25(8): 294. DOI: 10.31083/j.rcm2508294.
|
| [52] |
FANG S S, JIN H J, ZHANG J Y, et al. Machine learning for predicting acute myocardial infarction in patients with sepsis[J]. Sci Rep, 2024, 14(1): 30629. DOI: 10.1038/s41598-024-80575-z.
|
| [53] |
ZHU Y H, CHEN Y X, ZU Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation[J]. J Transl Med, 2024, 22(1): 612. DOI: 10.1186/s12967-024-05415-0.
|
| [54] |
LI H, SUN X, LI Z, et al. Machine learning-based integration develops biomarkers initial the crosstalk between inflammation and immune in acute myocardial infarction patients[J]. Front Cardiovasc Med, 2022, 9: 1059543. DOI: 10.3389/fcvm.2022.1059543.
|
| [55] |
LIU C, ZHANG X, XIE Q, et al. Identification of key proteins and pathways in myocardial infarction using machine learning approaches[J]. Sci Rep, 2025, 15(1): 19530. DOI: 10.1038/s41598-025-04401-w.
|
| [56] |
TSIACHRISTAS A, CHAN K, WAHOME E, et al. Cost-effectiveness of a novel AI technology to quantify coronary inflammation and cardiovascular risk in patients undergoing routine coronary computed tomography angiography[J]. Eur Heart J Qual Care Clin Outcomes, 2025, 11(4): 434-444. DOI: 10.1093/ehjqcco/qcae085.
|
| [57] |
|
| [58] |
MITSIS A, AVRAAMIDES P, LAKOUMENTAS J, et al. Role of inflammation following an acute myocardial infarction: design of INFINITY[J]. Biomark Med, 2023, 17(23): 971-981. DOI: 10.2217/bmm-2023-0491.
|
| [59] |
BIASUCCI L M, LIUZZO G, GRILLO R L, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability[J]. Circulation, 1999, 99(7): 855-860. DOI: 10.1161/01.cir.99.7.855.
|
| [60] |
MUELLER C, BUETTNER H J, HODGSON J M, et al. Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients[J]. Circulation, 2002, 105(12): 1412-1415. DOI: 10.1161/01.cir.0000012625.02748.62.
|
| [61] |
JAMES S K, LINDAHL B, SIEGBAHN A, et al. N-terminal pro-brain natriuretic peptide and other risk markers for the separate prediction of mortality and subsequent myocardial infarction in patients with unstable coronary artery disease: a Global Utilization of Strategies To Open occluded arteries (GUSTO)-Ⅳ substudy[J]. Circulation, 2003, 108(3): 275-281. DOI: 10.1161/01.CIR.0000079170.10579.DC.
|
| [62] |
RIDKER P M, BHATT D L, PRADHAN A D, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials[J]. Lancet, 2023, 401(10384): 1293-1301. DOI: 10.1016/S0140-6736(23)00215-5.
|
| [63] |
ZHU Y H, HE H Y, QIU H, et al. Prognostic value of systemic immune-inflammation index and NT-proBNP in patients with acute ST-elevation myocardial infarction[J]. Clin Interv Aging, 2023, 18: 397-407. DOI: 10.2147/CIA.S397614.
|
| [64] |
RYMER J A, NEWBY L K. Failure to launch: targeting inflammation in acute coronary syndromes[J]. JACC Basic Transl Sci, 2017, 2(4): 484-497. DOI: 10.1016/j.jacbts.2017.07.001.
|
| [65] |
SCHÄCHINGER V, ASSMUS B, ERBS S, et al. Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR-AMI) trial[J]. Eur J Heart Fail, 2009, 11(10): 973-979. DOI: 10.1093/eurjhf/hfp113.
|
| [66] |
WESTMAN P C, LIPINSKI M J, LUGER D, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction[J]. J Am Coll Cardiol, 2016, 67(17): 2050-2060. DOI: 10.1016/j.jacc.2016.01.073.
|
| [67] |
HUSEBYE T, ERITSLAND J, ARNESEN H, et al. Association of interleukin 8 and myocardial recovery in patients with ST-elevation myocardial infarction complicated by acute heart failure[J]. PLoS One, 2014, 9(11): e112359. DOI: 10.1371/journal.pone.0112359.
|
| [68] |
VALGIMIGLI M, CECONI C, MALAGUTTI P, et al. Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study[J]. Circulation, 2005, 111(7): 863-870. DOI: 10.1161/01.CIR.0000155614.35441.69.
|
| [69] |
ONO K, MATSUMORI A, SHIOI T, et al. Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling[J]. Circulation, 1998, 98(2): 149-156. DOI: 10.1161/01.cir.98.2.149.
|
| [70] |
SHETELIG C, LIMALANATHAN S, HOFFMANN P, et al. Association of IL-8 with infarct size and clinical outcomes in patients with STEMI[J]. J Am Coll Cardiol, 2018, 72(2): 187-198. DOI: 10.1016/j.jacc.2018.04.053.
|
| [71] |
BUJAK M, DOBACZEWSKI M, CHATILA K, et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling[J]. Am J Pathol, 2008, 173(1): 57-67. DOI: 10.2353/ajpath.2008.070974.
|
| [72] |
HOLZKNECHT M, REINDL M, TILLER C, et al. Clinical risk score to predict early left ventricular thrombus after ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Imaging, 2021, 14(1): 308-310. DOI: 10.1016/j.jcmg.2020.07.033.
|
| [73] |
ANZAI T, YOSHIKAWA T, KANEKO H, et al. Association between serum C-reactive protein elevation and left ventricular thrombus formation after first anterior myocardial infarction[J]. Chest, 2004, 125(2): 384-389. DOI: 10.1378/chest.125.2.384.
|
| [74] |
LECHNER I, REINDL M, TILLER C, et al. Association between inflammation and left ventricular thrombus formation following ST-elevation myocardial infarction[J]. Int J Cardiol, 2022, 361: 1-6. DOI: 10.1016/j.ijcard.2022.05.009.
|
| [75] |
ERTEM A G, OZCELIK F, KASAPKARA H A, et al. Neutrophil lymphocyte ratio as a predictor of left ventricular apical thrombus in patients with myocardial infarction[J]. Korean Circ J, 2016, 46(6): 768-773. DOI: 10.4070/kcj.2016.46.6.768.
|
| [76] |
TARDIF J C, KOUZ S, WATERS D D, et al. Efficacy and safety of low-dose colchicine after myocardial infarction[J]. N Engl J Med, 2019, 381(26): 2497-2505. DOI: 10.1056/NEJMoa1912388.
|
| [77] |
NIDORF S M, FIOLET A T L, MOSTERD A, et al. Colchicine in patients with chronic coronary disease[J]. N Engl J Med, 2020, 383(19): 1838-1847. DOI: 10.1056/NEJMoa2021372.
|
| [78] |
RIDKER P M, EVERETT B M, THUREN T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med, 2017, 377(12): 1119-1131. DOI: 10.1056/NEJMoa1707914.
|
| [79] |
SOTHIVELR V, HASAN M Y, MOHD SAFFIAN S, et al. Revisiting miRNA-21 as a therapeutic strategy for myocardial infarction: a systematic review[J]. J Cardiovasc Pharmacol, 2022, 80(3): 393-406. DOI: 10.1097/FJC.0000000000001305.
|
| [80] |
LI Z L, LIN C, CAI X L, et al. Anti-inflammatory therapies were associated with reduced risk of myocardial infarction in patients with established cardiovascular disease or high cardiovascular risks: a systematic review and meta-analysis of randomized controlled trials[J]. Atherosclerosis, 2023, 379: 117181. DOI: 10.1016/j.atherosclerosis.2023.06.972.
|
| [81] |
AGHAJANI M, FAGHIHI M, IMANI A, et al. Post-infarct sleep disruption and its relation to cardiac remodeling in a rat model of myocardial infarction[J]. Chronobiol Int, 2017, 34(5): 587-600. DOI: 10.1080/07420528.2017.1281823.
|
| [82] |
GAO R F, SHI H R, CHANG S C, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction[J]. Int Immunopharmacol, 2019, 74: 105575. DOI: 10.1016/j.intimp.2019.04.022.
|
| [83] |
ZHU Y M, CHEN X, GUO L Z, et al. Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction[J]. J Sleep Res, 2022, 31(6): e13679. DOI: 10.1111/jsr.13679.
|
| [84] |
STÄHLI B E, KLINGENBERG R, HEG D, et al. Mammalian target of rapamycin inhibition in patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol, 2022, 80(19): 1802-1814. DOI: 10.1016/j.jacc.2022.08.747.
|
| [85] |
APEX AMI Investigators, ARMSTRONG P W, GRANGER C B, et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial[J]. JAMA, 2007, 297(1): 43-51. DOI: 10.1001/jama.297.1.43.
|
| [86] |
NICHOLLS S J, KASTELEIN J J P, SCHWARTZ G G, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial[J]. JAMA, 2014, 311(3): 252-262. DOI: 10.1001/jama.2013.282836.
|
| [87] |
HEUSCH G, GERSH B J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge[J]. Eur Heart J, 2017, 38(11): 774-784. DOI: 10.1093/eurheartj/ehw224.
|
| [88] |
RIDKER P M, EVERETT B M, PRADHAN A, et al. Low-dose methotrexate for the prevention of atherosclerotic events[J]. N Engl J Med, 2019, 380(8): 752-762. DOI: 10.1056/NEJMoa1809798.
|
| [89] |
LI C L, FANG M, LIN Z K, et al. microRNA-24 protects against myocardial ischemia-reperfusion injury via the NF-κB/TNF-α pathway[J]. Exp Ther Med, 2021, 22(5): 1288. DOI: 10.3892/etm.2021.10723.
|
| [90] |
ZEGEYE M M, LINDKVIST M, FÄLKER K, et al. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells[J]. Cell Commun Signal, 2018, 16(1): 55. DOI: 10.1186/s12964-018-0268-4.
|
| [91] |
DE GAETANO M, CREAN D, BARRY M, et al. M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis[J]. Front Immunol, 2016, 7: 275. DOI: 10.3389/fimmu.2016.00275.
|