Chinese General Practice ›› 2024, Vol. 27 ›› Issue (33): 4147-4154.DOI: 10.12114/j.issn.1007-9572.2024.0032
• Original Research • Previous Articles Next Articles
Received:
2024-02-07
Revised:
2024-06-20
Published:
2024-11-20
Online:
2024-08-08
Contact:
MA Zuchang
通讯作者:
马祖长
作者简介:
作者贡献:
周镇森进行研究设计、数据分析、撰写论文;周镇森、黄岩、张晓雨负责数据收集;程思为负责数据校对和录入;张小玉、孙婷、杨先军、谢晖负责文章审校;马祖长负责最终版本修订,对论文整体负责。
基金资助:
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2024.0032
分类 | 例数 | 性别(男/女) | 年龄[M(P25,P75),岁] | BMI(kg/m2) | SBP[M(P25,P75),mmHg] | DBP[M(P25,P75),mmHg] | MAP[M(P25,P75),mmHg] | 心率[M(P25,P75),bpm] | GFR[mL·min-1·(1.73 m2)-1] |
---|---|---|---|---|---|---|---|---|---|
无主动脉硬化风险者 | 503 | 240/263 | 45(30,55) | 23.0±3.6 | 117(108,125) | 72(66,78) | 66(59,73) | 68(61,76) | 111.20±14.68 |
有主动脉硬化风险者 | 200 | 109/91 | 59(53,69) | 24.1±3.2 | 137(129,146) | 81(76,90) | 100(95,107) | 69(62,76) | 94.75±15.76 |
检验统计量值 | 2.636a | -14.682 | -3.394b | -15.046 | -11.157 | -13.971 | -0.784 | 12.463 | |
P值 | 0.104 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.433 | <0.001 | |
分类 | 肌酐[M(P25,P75),μmol/L] | 尿素[M(P25,P75),mmol/L] | UA(μmol/L) | FBG[M(P25,P75),mmol/L] | LDL-C[M(P25,P75),mmol/L] | TG[M(P25,P75),mmol/L] | HDL-C[M(P25,P75),mmol/L] | TC[M(P25,P75),mmol/L] | |
无主动脉硬化风险者 | 66.15(56.40,77.30) | 4.82(4.04,5.70) | 344.92±96.62 | 5.13(4.83,5.43) | 3.18(2.75,3.74) | 1.17(0.86,1.60) | 1.37(1.21,1.60) | 4.75(4.25,5.38) | |
有主动脉硬化风险者 | 71.10(61.85,80.10) | 5.49(4.55,6.32) | 345.24±85.55 | 6.20(5.46,6.77) | 3.35(2.90,3.90) | 1.40(0.95,2.11) | 1.44(1.22,1.62) | 4.93(4.22,5.60) | |
检验统计量值 | -1.561 | -4.879 | 0.186b | -12.196 | -2.217 | -4.509 | -1.331 | -2.879 | |
P值 | 0.118 | <0.001 | 0.973 | <0.001 | 0.027 | <0.001 | 0.183 | 0.009 | |
分类 | ALT[M(P25,P75),U/L] | AST[M(P25,P75),U/L] | Hb[M(P25,P75),g/L] | PLT[M(P25,P75),×10-9/L] | 吸烟[例(%)] | 饮酒[例(%)] | 血脂异常[例(%)] | 糖尿病[例(%)] | |
无主动脉硬化风险者 | 18.10(12.88,29.00) | 21.50(18.00,25.70) | 132(126,150) | 225(187,266) | 74(14.7) | 45(8.9) | 160(31.8) | 10(2.0) | |
有主动脉硬化风险者 | 20.00(15.00,28.18) | 23.00(20.00,27.00) | 151(137,160) | 208(173,250) | 34(17.0) | 43(21.5) | 101(50.5) | 29(14.5) | |
检验统计量值 | -2.042 | -4.029 | -2.012 | -2.679 | 0.542a | 12.740a | 11.349a | 36.280a | |
P值 | 0.041 | <0.001 | 0.031 | 0.007 | 0.461 | <0.001 | <0.001 | <0.001 |
Table 1 Comparison of general baseline data between those at risk of aortic sclerosis and those at risk of aortic sclerosis in the modeling group
分类 | 例数 | 性别(男/女) | 年龄[M(P25,P75),岁] | BMI(kg/m2) | SBP[M(P25,P75),mmHg] | DBP[M(P25,P75),mmHg] | MAP[M(P25,P75),mmHg] | 心率[M(P25,P75),bpm] | GFR[mL·min-1·(1.73 m2)-1] |
---|---|---|---|---|---|---|---|---|---|
无主动脉硬化风险者 | 503 | 240/263 | 45(30,55) | 23.0±3.6 | 117(108,125) | 72(66,78) | 66(59,73) | 68(61,76) | 111.20±14.68 |
有主动脉硬化风险者 | 200 | 109/91 | 59(53,69) | 24.1±3.2 | 137(129,146) | 81(76,90) | 100(95,107) | 69(62,76) | 94.75±15.76 |
检验统计量值 | 2.636a | -14.682 | -3.394b | -15.046 | -11.157 | -13.971 | -0.784 | 12.463 | |
P值 | 0.104 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.433 | <0.001 | |
分类 | 肌酐[M(P25,P75),μmol/L] | 尿素[M(P25,P75),mmol/L] | UA(μmol/L) | FBG[M(P25,P75),mmol/L] | LDL-C[M(P25,P75),mmol/L] | TG[M(P25,P75),mmol/L] | HDL-C[M(P25,P75),mmol/L] | TC[M(P25,P75),mmol/L] | |
无主动脉硬化风险者 | 66.15(56.40,77.30) | 4.82(4.04,5.70) | 344.92±96.62 | 5.13(4.83,5.43) | 3.18(2.75,3.74) | 1.17(0.86,1.60) | 1.37(1.21,1.60) | 4.75(4.25,5.38) | |
有主动脉硬化风险者 | 71.10(61.85,80.10) | 5.49(4.55,6.32) | 345.24±85.55 | 6.20(5.46,6.77) | 3.35(2.90,3.90) | 1.40(0.95,2.11) | 1.44(1.22,1.62) | 4.93(4.22,5.60) | |
检验统计量值 | -1.561 | -4.879 | 0.186b | -12.196 | -2.217 | -4.509 | -1.331 | -2.879 | |
P值 | 0.118 | <0.001 | 0.973 | <0.001 | 0.027 | <0.001 | 0.183 | 0.009 | |
分类 | ALT[M(P25,P75),U/L] | AST[M(P25,P75),U/L] | Hb[M(P25,P75),g/L] | PLT[M(P25,P75),×10-9/L] | 吸烟[例(%)] | 饮酒[例(%)] | 血脂异常[例(%)] | 糖尿病[例(%)] | |
无主动脉硬化风险者 | 18.10(12.88,29.00) | 21.50(18.00,25.70) | 132(126,150) | 225(187,266) | 74(14.7) | 45(8.9) | 160(31.8) | 10(2.0) | |
有主动脉硬化风险者 | 20.00(15.00,28.18) | 23.00(20.00,27.00) | 151(137,160) | 208(173,250) | 34(17.0) | 43(21.5) | 101(50.5) | 29(14.5) | |
检验统计量值 | -2.042 | -4.029 | -2.012 | -2.679 | 0.542a | 12.740a | 11.349a | 36.280a | |
P值 | 0.041 | <0.001 | 0.031 | 0.007 | 0.461 | <0.001 | <0.001 | <0.001 |
自变量 | β | SE | Wald χ2值 | P值 | OR值 | 95%CI |
---|---|---|---|---|---|---|
男性 | 0.461 | 0.169 | 7.441 | 0.006 | 1.586 | 1.139~2.210 |
年龄 | 0.103 | 0.009 | 130.975 | <0.001 | 1.109 | 1.090~1.128 |
MAP | 0.144 | 0.012 | 144.000 | <0.001 | 1.155 | 1.118~1.183 |
BMI | 0.089 | 0.028 | 10.103 | 0.001 | 1.093 | 1.035~1.154 |
AST | 0.022 | 0.011 | 4.000 | 0.039 | 1.023 | 1.001~1.045 |
GFR | -0.072 | 0.008 | 81.000 | <0.001 | 0.931 | 0.915~0.946 |
UA | 0.283 | 0.073 | 15.029 | <0.001 | 1.327 | 1.150~1.532 |
FBG | 1.030 | 0.140 | 54.128 | <0.001 | 2.800 | 2.126~3.687 |
TG | 0.388 | 0.108 | 12.907 | <0.001 | 1.474 | 1.193~1.820 |
TC | 0.274 | 0.096 | 8.146 | 0.005 | 1.315 | 1.089~1.589 |
Hb | 0.267 | 0.071 | 14.142 | 0.013 | 1.302 | 1.076~1.577 |
血脂异常 | 0.667 | 0.212 | 9.899 | 0.002 | 1.949 | 1.286~2.952 |
Table 2 Univariate Logistic regression analysis of the influencing factors of aortic sclerosis
自变量 | β | SE | Wald χ2值 | P值 | OR值 | 95%CI |
---|---|---|---|---|---|---|
男性 | 0.461 | 0.169 | 7.441 | 0.006 | 1.586 | 1.139~2.210 |
年龄 | 0.103 | 0.009 | 130.975 | <0.001 | 1.109 | 1.090~1.128 |
MAP | 0.144 | 0.012 | 144.000 | <0.001 | 1.155 | 1.118~1.183 |
BMI | 0.089 | 0.028 | 10.103 | 0.001 | 1.093 | 1.035~1.154 |
AST | 0.022 | 0.011 | 4.000 | 0.039 | 1.023 | 1.001~1.045 |
GFR | -0.072 | 0.008 | 81.000 | <0.001 | 0.931 | 0.915~0.946 |
UA | 0.283 | 0.073 | 15.029 | <0.001 | 1.327 | 1.150~1.532 |
FBG | 1.030 | 0.140 | 54.128 | <0.001 | 2.800 | 2.126~3.687 |
TG | 0.388 | 0.108 | 12.907 | <0.001 | 1.474 | 1.193~1.820 |
TC | 0.274 | 0.096 | 8.146 | 0.005 | 1.315 | 1.089~1.589 |
Hb | 0.267 | 0.071 | 14.142 | 0.013 | 1.302 | 1.076~1.577 |
血脂异常 | 0.667 | 0.212 | 9.899 | 0.002 | 1.949 | 1.286~2.952 |
自变量 | β | SE | Wald χ2值 | P值 | OR值 | 95%CI |
---|---|---|---|---|---|---|
年龄 | 0.106 | 0.014 | 57.327 | <0.001 | 1.112 | 1.082~1.143 |
MAP | 0.137 | 0.018 | 57.929 | <0.001 | 1.146 | 1.107~1.188 |
Hb | 0.026 | 0.011 | 5.587 | 0.019 | 1.026 | 1.004~1.049 |
FBG | 0.302 | 0.117 | 6.663 | 0.010 | 1.353 | 1.076~1.701 |
Table 3 Multivariate Logistic regression analysis of the influencing factors of aortic sclerosis
自变量 | β | SE | Wald χ2值 | P值 | OR值 | 95%CI |
---|---|---|---|---|---|---|
年龄 | 0.106 | 0.014 | 57.327 | <0.001 | 1.112 | 1.082~1.143 |
MAP | 0.137 | 0.018 | 57.929 | <0.001 | 1.146 | 1.107~1.188 |
Hb | 0.026 | 0.011 | 5.587 | 0.019 | 1.026 | 1.004~1.049 |
FBG | 0.302 | 0.117 | 6.663 | 0.010 | 1.353 | 1.076~1.701 |
分类 | 指标 | AUC | 95%CI | 灵敏度 | 特异度 | 准确率(%) |
---|---|---|---|---|---|---|
模型Ⅰ | 年龄、MAP、Hb、FBG | 0.941 | 0.923~0.964 | 0.832 | 0.917 | 86.8 |
模型Ⅱ | 年龄、MAP、Hb、FBG、吸烟 | 0.941 | 0.922~0.962 | 0.880 | 0.869 | 86.6 |
模型Ⅲ | 年龄、MAP、Hb、FBG、性别 | 0.941 | 0.922~0.963 | 0.816 | 0.913 | 86.5 |
模型Ⅳ | 年龄、MAP、Hb、FBG、血脂异常 | 0.939 | 0.919~0.962 | 0.809 | 0.908 | 85.8 |
Table 4 Performance evaluation results of the prediction model for aortic sclerosis
分类 | 指标 | AUC | 95%CI | 灵敏度 | 特异度 | 准确率(%) |
---|---|---|---|---|---|---|
模型Ⅰ | 年龄、MAP、Hb、FBG | 0.941 | 0.923~0.964 | 0.832 | 0.917 | 86.8 |
模型Ⅱ | 年龄、MAP、Hb、FBG、吸烟 | 0.941 | 0.922~0.962 | 0.880 | 0.869 | 86.6 |
模型Ⅲ | 年龄、MAP、Hb、FBG、性别 | 0.941 | 0.922~0.963 | 0.816 | 0.913 | 86.5 |
模型Ⅳ | 年龄、MAP、Hb、FBG、血脂异常 | 0.939 | 0.919~0.962 | 0.809 | 0.908 | 85.8 |
模型 | Z值 | P值 |
---|---|---|
模型Ⅰ与模型Ⅱ | -0.307 | 0.759 |
模型Ⅰ与模型Ⅲ | 0.463 | 0.644 |
模型Ⅰ与模型Ⅳ | -0.776 | 0.438 |
模型Ⅱ与模型Ⅲ | 0.433 | 0.665 |
模型Ⅱ与模型Ⅳ | 0.013 | 0.989 |
模型Ⅲ与模型Ⅳ | -0.922 | 0.357 |
Table 5 The comparative results of AUC prediction of aortic stiffness by Model Ⅰ,Model Ⅱ,Model Ⅲ,and Model Ⅳ
模型 | Z值 | P值 |
---|---|---|
模型Ⅰ与模型Ⅱ | -0.307 | 0.759 |
模型Ⅰ与模型Ⅲ | 0.463 | 0.644 |
模型Ⅰ与模型Ⅳ | -0.776 | 0.438 |
模型Ⅱ与模型Ⅲ | 0.433 | 0.665 |
模型Ⅱ与模型Ⅳ | 0.013 | 0.989 |
模型Ⅲ与模型Ⅳ | -0.922 | 0.357 |
[1] |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志,2023,38(6):583-612. DOI:10.3969/j.issn.1000-3614.2023.06.001.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
徐文超,覃玉,苏健,等. 江苏省≥35岁社区居民饮酒与肥胖对糖尿病患病交互作用[J]. 中国公共卫生,2020,36(12):1776-1779. DOI:10.11847/zgggws1123881.
|
[11] |
王增武,刘静,李建军,等. 中国血脂管理指南(2023年)[J]. 中国循环杂志,2023,38(3):237-271.
|
[12] |
Reference Values For Arterial Stiffness' Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors:'establishing normal and reference values'[J]. Eur Heart J,2010,31(19):2338-2350. DOI:10.1093/eurheartj/ehq165.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
刘倩,韩旭,马一涵,等. 非高血压人群平均动脉压对动脉硬化进展的影响[J]. 中华高血压杂志,2021,29(8):733-739. DOI:10.16439/j.issn.1673-7245.2021.08.008.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] | |
[30] |
|
[31] |
|
[32] | |
[33] |
王俊峰,章仲恒,周支瑞,等. 临床预测模型:模型的验证[J]. 中国循证心血管医学杂志,2019,11(2):141-144. DOI:10.3969/j.issn.1674-4055.2019.02.04.
|
[1] | LI Qiuling, TANG Wenwu, YU Yiwen, DENG Huan, YANG Xiaohua, CHEN Xiaoxia, JI Yifei. Establishment and Verification of Risk Prediction Model for Silent Brain Infarction in Maintenance Hemodialysis Patients: a Multicenter Study [J]. Chinese General Practice, 2024, 27(26): 3232-3239. |
[2] | GAO Ying, XU Xinyi, LIU Yang, YANG Xiaokun. Research on the Development of Atherosclerotic Cardiovascular Disease Prediction Model for the Elderly Based on TCM Constitution [J]. Chinese General Practice, 2024, 27(15): 1878-1885. |
[3] | CHEN Xiaoqian, LI Lihua. Advancements in the Association between a Body Shape Index and Atherosclerosis [J]. Chinese General Practice, 2024, 27(15): 1899-1903. |
[4] | LIU Caixia, AN Tingting, LIU Jing, LI Xiangyang, JIN Jie, XU Lanjuan. Prognostic Value of IMPACT and CRASH Models in the Assessment of Patients with Traumatic Brain Injury: a Comparative Study [J]. Chinese General Practice, 2024, 27(15): 1843-1849. |
[5] | ZHONG Jinjia, LI Wentao, HUANG Yafang, WU Hao. Design Features and Methodological Quality of Researches about Prediction Models Based on Machine Learning in Primary Care: a Scoping Review [J]. Chinese General Practice, 2024, 27(10): 1271-1276. |
[6] | HAN Junjie, WU Di, CHEN Zhisheng, XIAO Yang, SEN Gan. A Nomogram Prediction Model and Validation Study on the Risk of Complicated Diabetic Nephropathy in Type 2 Diabetes Patients [J]. Chinese General Practice, 2024, 27(09): 1054-1061. |
[7] | ZOU Qiong, WU Xi, ZHANG Yang, WAN Yi, CHEN Changsheng. Prediction of Type 2 Diabetic Nephropathy Based on BP Neural Network Optimized by Sparrow Search Algorithm [J]. Chinese General Practice, 2024, 27(08): 961-970. |
[8] | WANG Zhen, SHEN Guoqi, LI Yanan, ZHU Yinghua, QIU Hang, ZHENG Di, XU Tongda, LI Wenhua. Development and Validation of a Risk Prediction Model for Contrast-induced Acute Kidney Injury after Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction [J]. Chinese General Practice, 2023, 26(29): 3650-3656. |
[9] | DING Xiaoyun, JIN Juzhen, YANG Jin, ZHOU Jing, HU Jin, MENG Yue, LIANG Xiaoxian, GAI Yun, WANG Junhua, WANG Ziyun. The Mediating Effect of Waist Circumference and Fasting Plasma Glucose on the Association between Obstructive Sleep Apnea Syndrome and Arterial Stiffness in a Population Aged 40-65 Years [J]. Chinese General Practice, 2023, 26(21): 2597-2602. |
[10] | SHEN Aomei, LU Qian, FU Xin, WEI Xiaoxia, BIAN Jingru, ZHANG Liyuan, QIANG Wanmin, PANG Dong. Constructing a Risk Prediction Model of Breast Cancer-related Lymphedema Based on a Meta-analysis of Prospective Cohort Studies [J]. Chinese General Practice, 2023, 26(17): 2078-2088. |
[11] | Shenzhen Group of Integrated Medical and Preventive Medicine Program for Respiratory Diseases, Shenzhen Center for the Prevention and Treatment of Major Respiratory Diseases, Shenzhen Community Health Association. Early Screening and Standardized Management Pathway for Bronchial Asthma in Shenzhen Community Healthcare Settings (Trial Version) [J]. Chinese General Practice, 2023, 26(03): 262-267. |
[12] | WEI Xu, LIU Ning, ZHANG Yili, HAN Tao, SUN Kai, QI Baoyu, CHEN Xin, QIN Xiaokuan, GAO Jinghua, XIE Yanming, ZHU Liguo. Comorbidities of Osteoporosis: Recent Advances and Early Screening [J]. Chinese General Practice, 2022, 25(35): 4369-4374. |
[13] | HE Ting, YUAN Li, YANG Xiaoling, YE Ziwei, LI Rao, GU Yan. Risk Prediction Models for Type 2 Diabetes in Asian Adults: a Systematic Review [J]. Chinese General Practice, 2022, 25(34): 4267-4277. |
[14] | Yongjian WANG, Weijing QI, Yipeng WANG, Sha HUANG, Cong LI, Na WEI, Jie HU. Classification and Comparative Analysis of Prediction Models for Postpartum Depression [J]. Chinese General Practice, 2022, 25(24): 3036-3042. |
[15] | Yan RAO, Meiqi YAO, Dawei JIANG, Cui MAO. Development and Validation of a Risk Prediction Model of Post-stroke Acute Kidney Injury [J]. Chinese General Practice, 2022, 25(23): 2885-2891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||