Chinese General Practice ›› 2025, Vol. 28 ›› Issue (05): 554-560.DOI: 10.12114/j.issn.1007-9572.2024.0090

Special Issue: 脑健康最新研究合辑

• Stroke Section • Previous Articles     Next Articles

Advances in the Prognostic Prediction of Acute Ischemic Stroke: Using Machine Learning Predictive Models as an Example

  

  1. Department of Epidemiology, School of Public Health, Nanchang University/Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang 330006, China
  • Received:2024-03-10 Revised:2024-05-20 Published:2025-02-15 Online:2024-11-25
  • Contact: KUANG Jie
  • About author:

    DU Huijie and LIU Xingyu are co-first authors

急性缺血性脑卒中预后预测研究的应用进展:以机器学习预测模型为例

  

  1. 330006 江西省南昌市,南昌大学公共卫生学院流行病学教研室 江西省预防医学重点实验室
  • 通讯作者: 况杰
  • 作者简介:

    杜慧杰和刘星雨为共同第一作者

    作者贡献:

    杜慧杰、刘星雨负责文章的设计、构思及论文写作;徐明欢、杨学智、张慧琴、莫佳丽、卢依负责文献的收集、整理;况杰负责文章的修订、质量控制及审校并对文章整体负责;所有作者确认了论文的最终稿。

  • 基金资助:
    国家自然科学基金资助项目(82160645,82360667); 江西省自然科学基金(20212BAB206091); 南昌大学2023年科研训练项目(2023); 国家大学生创新创业训练计划项目(202210403017)

Abstract:

Acute ischemic stroke (AIS) is characterized by high rates of disability, mortality, and recurrence, posing a significant burden on patients and society. In the era of big data, predictive models are increasingly used in patient diagnosis, treatment decisions, prognosis management, and healthcare resource allocation, highlighting their growing importance. Machine learning methods have become a crucial tool for predicting the prognosis of AIS patients and have been widely applied. This review explores recent advancements in the study of AIS prognosis prediction, focusing on machine learning methods. It discusses current issues and challenges faced by machine learning models, aiming to provide new insights and references for methods of early assessment and prediction of prognosis outcomes in AIS patients.

Key words: Ischemic stroke, Prognosis prediction, Machine learning, Prediction model, Review

摘要:

急性缺血性脑卒中(AIS)具有高致残率、高病死率及高复发率等特点,给患者及社会造成沉重的负担。随着大数据时代的到来,预测模型在患者的诊治决策、预后管理以及卫生资源配置等方面的应用越来越多,其价值也愈发重要。机器学习方法是预测AIS患者预后的重要方法之一,且已广泛应用。本文以机器学习方法为重点,就AIS预后预测研究的最新进展予以综述,并提出机器学习预测模型目前所面临的问题与挑战,为AIS患者预后结局早期评估与预测在方法上提供新的思路和参考。

关键词: 缺血性卒中, 预后预测, 机器学习, 预测模型, 综述

CLC Number: