Chinese General Practice ›› 2022, Vol. 25 ›› Issue (11): 1334-1339.DOI: 10.12114/j.issn.1007-9572.2022.0125
• Article • Previous Articles Next Articles
Comparison of Three Risk Prediction Models for Carotid Atherosclerosis in Steelworkers
Department of Epidemiology and Health Statistics,School of Public Health,North China University of Science and Technology/Hebei Provincial Key Laboratory of Coal Mine Health and Safety,Tangshan 063210,China
*Corresponding author:WANG Guoli,Professor;E-mail:15383055966@163.com
Received:
2022-01-14
Revised:
2022-02-21
Published:
2022-04-15
Online:
2022-03-28
通讯作者:
王国立
基金资助:
CLC Number:
WANG Jiaojiao, CHEN Yuanyu, ZHENG Ziwei, YANG Yongzhong, CHEN Zhe, LI Chao, WANG Haidong, WU Jianhui, WANG Guoli.
Comparison of Three Risk Prediction Models for Carotid Atherosclerosis in Steelworkers [J]. Chinese General Practice, 2022, 25(11): 1334-1339.
变量 | 例数 | CAS | χ2值 | P值 | 变量 | 例数 | CAS | χ2值 | P值 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
性别 | 0.010 | 0.907 | 糖尿病 | 0.030 | 0.860 | ||||||
男 | 4 185 | 1 159(27.69) | 否 | 4 016 | 1 113(27.71) | ||||||
女 | 383 | 105(27.42) | 是 | 552 | 151(27.36) | ||||||
年龄(岁) | 0.097 | 0.755 | CAS家族史 | 74.160 | <0.001 | ||||||
<45 | 1 972 | 541(27.43) | 否 | 4 372 | 1 157(26.46) | ||||||
≥45 | 2 596 | 723(27.85) | 是 | 196 | 107(54.59) | ||||||
BMI(kg/m2) | 2.320 | 0.509 | 倒班 | 4.300 | 0.038 | ||||||
偏轻 | 58 | 18(31.03) | 否 | 711 | 174(24.47) | ||||||
正常 | 1 463 | 424(28.98) | 是 | 3 857 | 1 090(28.26) | ||||||
超重 | 1 988 | 536(26.96) | 高温作业 | 5.460 | 0.019 | ||||||
肥胖 | 1 059 | 289(27.21) | 否 | 2 173 | 566(26.05) | ||||||
文化程度 | 1.460 | 0.483 | 是 | 2 395 | 698(29.14) | ||||||
初中及以下 | 54 | 11(20.37) | 噪声作业 | 7.720 | 0.005 | ||||||
高中/中专 | 3 525 | 979(27.77) | 否 | 1 990 | 509(25.58) | ||||||
大专及以上 | 989 | 274(27.70) | 是 | 2 578 | 755(29.29) | ||||||
婚姻状况 | 0.760 | 0.686 | 高胆固醇 | 15.660 | <0.001 | ||||||
未婚 | 162 | 41(25.31) | 否 | 3 907 | 1 039(26.59) | ||||||
已婚 | 4 270 | 1 188(27.82) | 是 | 661 | 225(34.04) | ||||||
其他 | 136 | 35(25.74) | 高三酰甘油 | 0.100 | 0.756 | ||||||
吸烟 | 0.013 | 0.908 | 否 | 3 800 | 1 055(27.76) | ||||||
否 | 2 218 | 612(27.59) | 是 | 768 | 209(27.21) | ||||||
是 | 2 350 | 652(27.74) | 高同型半胱氨酸 | 0.330 | 0.568 | ||||||
饮酒 | 4.760 | 0.029 | 否 | 3 195 | 892(27.92) | ||||||
否 | 2 694 | 713(26.47) | 是 | 1 373 | 372(27.09) | ||||||
是 | 1 874 | 551(29.40) | 高尿酸血症 | 4.840 | 0.028 | ||||||
高血压 | 0.120 | 0.732 | 否 | 2 927 | 778(26.58) | ||||||
否 | 3 486 | 969(27.80) | 是 | 1 641 | 486(29.62) | ||||||
是 | 1 082 | 295(27.26) |
Table 1 Comparison of carotid atherosclerosis prevalence among steelworkers with different characteristics
变量 | 例数 | CAS | χ2值 | P值 | 变量 | 例数 | CAS | χ2值 | P值 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
性别 | 0.010 | 0.907 | 糖尿病 | 0.030 | 0.860 | ||||||
男 | 4 185 | 1 159(27.69) | 否 | 4 016 | 1 113(27.71) | ||||||
女 | 383 | 105(27.42) | 是 | 552 | 151(27.36) | ||||||
年龄(岁) | 0.097 | 0.755 | CAS家族史 | 74.160 | <0.001 | ||||||
<45 | 1 972 | 541(27.43) | 否 | 4 372 | 1 157(26.46) | ||||||
≥45 | 2 596 | 723(27.85) | 是 | 196 | 107(54.59) | ||||||
BMI(kg/m2) | 2.320 | 0.509 | 倒班 | 4.300 | 0.038 | ||||||
偏轻 | 58 | 18(31.03) | 否 | 711 | 174(24.47) | ||||||
正常 | 1 463 | 424(28.98) | 是 | 3 857 | 1 090(28.26) | ||||||
超重 | 1 988 | 536(26.96) | 高温作业 | 5.460 | 0.019 | ||||||
肥胖 | 1 059 | 289(27.21) | 否 | 2 173 | 566(26.05) | ||||||
文化程度 | 1.460 | 0.483 | 是 | 2 395 | 698(29.14) | ||||||
初中及以下 | 54 | 11(20.37) | 噪声作业 | 7.720 | 0.005 | ||||||
高中/中专 | 3 525 | 979(27.77) | 否 | 1 990 | 509(25.58) | ||||||
大专及以上 | 989 | 274(27.70) | 是 | 2 578 | 755(29.29) | ||||||
婚姻状况 | 0.760 | 0.686 | 高胆固醇 | 15.660 | <0.001 | ||||||
未婚 | 162 | 41(25.31) | 否 | 3 907 | 1 039(26.59) | ||||||
已婚 | 4 270 | 1 188(27.82) | 是 | 661 | 225(34.04) | ||||||
其他 | 136 | 35(25.74) | 高三酰甘油 | 0.100 | 0.756 | ||||||
吸烟 | 0.013 | 0.908 | 否 | 3 800 | 1 055(27.76) | ||||||
否 | 2 218 | 612(27.59) | 是 | 768 | 209(27.21) | ||||||
是 | 2 350 | 652(27.74) | 高同型半胱氨酸 | 0.330 | 0.568 | ||||||
饮酒 | 4.760 | 0.029 | 否 | 3 195 | 892(27.92) | ||||||
否 | 2 694 | 713(26.47) | 是 | 1 373 | 372(27.09) | ||||||
是 | 1 874 | 551(29.40) | 高尿酸血症 | 4.840 | 0.028 | ||||||
高血压 | 0.120 | 0.732 | 否 | 2 927 | 778(26.58) | ||||||
否 | 3 486 | 969(27.80) | 是 | 1 641 | 486(29.62) | ||||||
是 | 1 082 | 295(27.26) |
变量 | β | SE | Wald χ2值 | P值 | OR(95%CI) | |
---|---|---|---|---|---|---|
CAS家族史 | ||||||
否 | 1.00 | |||||
是 | 1.22 | 0.15 | 67.80 | <0.001 | 3.39(2.53,4.53) | |
高温作业 | ||||||
否 | 1.00 | |||||
是 | 0.14 | 0.07 | 4.34 | 0.037 | 1.15(1.01,1.31) | |
噪声作业 | ||||||
否 | 1.00 | |||||
是 | 0.19 | 0.07 | 7.71 | 0.005 | 1.21(1.06,1.38) | |
高胆固醇 | ||||||
否 | 1.00 | |||||
是 | 0.36 | 0.09 | 15.57 | <0.001 | 1.43(1.20,1.71) |
Table 2 Unconditioned multivariate Logistic regression analysis of factors associated with carotid atherosclerosis in steelworkers
变量 | β | SE | Wald χ2值 | P值 | OR(95%CI) | |
---|---|---|---|---|---|---|
CAS家族史 | ||||||
否 | 1.00 | |||||
是 | 1.22 | 0.15 | 67.80 | <0.001 | 3.39(2.53,4.53) | |
高温作业 | ||||||
否 | 1.00 | |||||
是 | 0.14 | 0.07 | 4.34 | 0.037 | 1.15(1.01,1.31) | |
噪声作业 | ||||||
否 | 1.00 | |||||
是 | 0.19 | 0.07 | 7.71 | 0.005 | 1.21(1.06,1.38) | |
高胆固醇 | ||||||
否 | 1.00 | |||||
是 | 0.36 | 0.09 | 15.57 | <0.001 | 1.43(1.20,1.71) |
Figure 1 ROC analysis of SVM-,BPNN- and RF-based models in predicting the risk of carotid atherosclerosis in steelworkers in the training set (left) and the test set (right)
评价指标 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|
SVM模型 | BPNN模型 | RF模型 | SVM模型 | BPNN模型 | RF模型 | |
准确率(%) | 83.81 | 79.27 | 86.60 | 85.70 | 75.46 | 73.37 |
灵敏度(%) | 80.10 | 66.19 | 73.62 | 81.63 | 64.65 | 60.00 |
特异度(%) | 87.32 | 91.62 | 98.90 | 90.29 | 87.66 | 88.45 |
约登指数 | 0.67 | 0.58 | 0.72 | 0.72 | 0.52 | 0.48 |
Kappa值 | 0.68 | 0.58 | 0.73 | 0.71 | 0.52 | 0.48 |
阳性似然比 | 6.31 | 7.90 | 66.93 | 8.41 | 5.24 | 5.20 |
阴性似然比 | 0.23 | 0.37 | 0.27 | 0.20 | 0.40 | 0.45 |
阳性预测值(%) | 85.64 | 88.18 | 98.40 | 90.46 | 85.54 | 85.43 |
阴性预测值(%) | 86.92 | 74.15 | 79.87 | 81.32 | 68.72 | 66.21 |
AUC(95%CI) | 0.84(0.82,0.85) | 0.79(0.77,0.81) | 0.86(0.85,0.88) | 0.86(0.83,0.88) | 0.76(0.73,0.79) | 0.74(0.71,0.77) |
Table 3 Comparison of performance of SVM-,BPNN- and RF-based models in predicting the risk of carotid atherosclerosis in steelworkers
评价指标 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|
SVM模型 | BPNN模型 | RF模型 | SVM模型 | BPNN模型 | RF模型 | |
准确率(%) | 83.81 | 79.27 | 86.60 | 85.70 | 75.46 | 73.37 |
灵敏度(%) | 80.10 | 66.19 | 73.62 | 81.63 | 64.65 | 60.00 |
特异度(%) | 87.32 | 91.62 | 98.90 | 90.29 | 87.66 | 88.45 |
约登指数 | 0.67 | 0.58 | 0.72 | 0.72 | 0.52 | 0.48 |
Kappa值 | 0.68 | 0.58 | 0.73 | 0.71 | 0.52 | 0.48 |
阳性似然比 | 6.31 | 7.90 | 66.93 | 8.41 | 5.24 | 5.20 |
阴性似然比 | 0.23 | 0.37 | 0.27 | 0.20 | 0.40 | 0.45 |
阳性预测值(%) | 85.64 | 88.18 | 98.40 | 90.46 | 85.54 | 85.43 |
阴性预测值(%) | 86.92 | 74.15 | 79.87 | 81.32 | 68.72 | 66.21 |
AUC(95%CI) | 0.84(0.82,0.85) | 0.79(0.77,0.81) | 0.86(0.85,0.88) | 0.86(0.83,0.88) | 0.76(0.73,0.79) | 0.74(0.71,0.77) |
评价指标 | 模型 | 训练集 | 测试集 | ||
---|---|---|---|---|---|
χ2(Z)值 | P值 | χ2(Z)值 | P值 | ||
灵敏度 | RF vs BPNN | 24.025 | <0.001 | 7.410 | 0.009 |
BPNN vs SVM | 75.596 | <0.001 | 56.100 | <0.001 | |
RF vs SVM | 21.130 | <0.001 | 80.830 | <0.001 | |
特异度 | RF vs BPNN | 53.900 | <0.001 | 0.120 | 0.815 |
BPNN vs SVM | 10.460 | <0.001 | 1.520 | 0.268 | |
RF vs SVM | 98.150 | <0.001 | 0.830 | 0.435 | |
准确率 | RF vs BPNN | 67.270 | <0.001 | 2.280 | 0.155 |
BPNN vs SVM | 19.250 | <0.001 | 42.790 | <0.001 | |
RF vs SVM | 9.440 | 0.003 | 60.240 | <0.001 | |
AUC | RF vs BPNN | 8.270a | <0.001 | 1.370a | 0.170 |
BPNN vs SVM | 4.760a | <0.001 | 6.530a | <0.001 | |
RF vs SVM | 2.860a | 0.004 | 7.920a | <0.001 |
Table 4 Comparison of the performance of SVM-,BPNN- and RF-based models in predicting the risk of carotid atherosclerosis in steelworkers in the training set and the test set
评价指标 | 模型 | 训练集 | 测试集 | ||
---|---|---|---|---|---|
χ2(Z)值 | P值 | χ2(Z)值 | P值 | ||
灵敏度 | RF vs BPNN | 24.025 | <0.001 | 7.410 | 0.009 |
BPNN vs SVM | 75.596 | <0.001 | 56.100 | <0.001 | |
RF vs SVM | 21.130 | <0.001 | 80.830 | <0.001 | |
特异度 | RF vs BPNN | 53.900 | <0.001 | 0.120 | 0.815 |
BPNN vs SVM | 10.460 | <0.001 | 1.520 | 0.268 | |
RF vs SVM | 98.150 | <0.001 | 0.830 | 0.435 | |
准确率 | RF vs BPNN | 67.270 | <0.001 | 2.280 | 0.155 |
BPNN vs SVM | 19.250 | <0.001 | 42.790 | <0.001 | |
RF vs SVM | 9.440 | 0.003 | 60.240 | <0.001 | |
AUC | RF vs BPNN | 8.270a | <0.001 | 1.370a | 0.170 |
BPNN vs SVM | 4.760a | <0.001 | 6.530a | <0.001 | |
RF vs SVM | 2.860a | 0.004 | 7.920a | <0.001 |
[1] | 秦璐,赵颖,佟隽瑶,等. 颈动脉粥样硬化伴OSAHS患者的颈动脉超声研究[J]. 中国医刊,2018,53(7):756-760. DOI:10.3969/j.issn.1008-1070.2018.07.017. |
[2] | 陈显荣,张晓. 超微血管成像与超声造影对颈动脉粥样硬化斑块稳定性的诊断价值[J]. 中国临床神经外科杂志,2019,24(5):289-291. DOI:10.137984,issn.1009-153X.2019.05.010. |
[3] | 陈伟伟,高润霖,刘力生,等. 《中国心血管病报告2017》概要[J]. 中国循环杂志,2018,33(1):1-8. DOI:10.3969/j.issn.1000-3614.2018.01.001. |
[4] | 秦真威,苏亚娇,王海涛,等. 职业因素组对钢铁工人颈动脉粥样硬化影响的病例对照研究[J]. 中华流行病学杂志,2020,41(11):1836-1842. DOI:10.3760/cma.j.cn112338-20190916-00677. |
[5] | 武建辉,王海东,王洁,等. 钢铁工人职业紧张与颈动脉粥样硬化关系的现况研究[J]. 中国全科医学,2020,23(20):2589-2593. DOI:10.12114/j.issn.1007-9572.2020.00.213. |
[6] | SCOUTT L M,GUNABUSHANAM G. Carotid Ultrasound[J]. Radiol Clin North Am,2019,57(3):501-518. DOI:10.1016/j.rcl.2019.01.008. |
[7] | 郝文超,刘艳如,张婧环,等. 健康体检颈动脉斑块检出情况及危险因素分析[J]. 临床误诊误治,2022,35(1):90-93.DOI:10.3969/j.issn.1002-3429.2022.01.021. |
[8] | PIRI R,GERKE O,HØILUND-CARLSEN P F. Molecular imaging of carotid artery atherosclerosis with PET:a systematic review[J]. Eur J Nucl Med Mol Imaging,2020,47(8):2016-2025. DOI:10.1007/s00259-019-04622-y. |
[9] | 张玲玲. 长沙地区心血管高危患者颈动脉粥样硬化及其危险因素的调查和研究[D]. 衡阳:南华大学,2015. |
[10] | 萧梅芳,谢思思,王保祥,等. 体检人群颈动脉粥样硬化筛查及危险因素分析[J]. 中国现代医学杂志,2019,29(18):86-89. DOI:10.3969/j.issn.1005-8982.2019.18.017. |
[11] | 张东平. 颈动脉粥样硬化的流行病学调查及临床研究[D]. 重庆:重庆医科大学,2009. |
[12] | 潘雯,张立敏,李茹,等. 辽宁省农村地区40岁及以上人群颈动脉粥样硬化流行病学特征现状分析[J]. 中国公共卫生,2021,37(1):92-96. DOI:10.11847/zgggws1133531. |
[13] | XING L Y,LI R,ZHANG S L,et al. High burden of carotid atherosclerosis in rural northeast China:a population-based study[J]. Front Neurol,2021,12:597992. DOI:10.3389/fneur.2021.597992. |
[14] | 姚利和. 颈动脉粥样硬化与脑梗死相关性研究及危险因素分析[D]. 兰州:兰州大学,2020. |
[15] | SONG P G,XIA W,ZHU Y J,et al. Prevalence of carotid atherosclerosis and carotid plaque in Chinese adults:a systematic review and meta-regression analysis[J]. Atherosclerosis,2018,276:67-73. DOI:10.1016/j.atherosclerosis.2018.07.020. |
[16] | SENTHILSELVAN A,COONGHE W V L,BEACH J. Respiratory health,occupation and the healthy worker effect[J]. Occup Med (Lond),2020,70(3):191-199. DOI:10.1093/occmed/kqaa023. |
[17] | ZHANG J,SANG H,ZHANG X,et al. Comparison of the characteristics and risk factors of carotid atherosclerosis in high stroke risk populations between urban and rural areas in North China[J]. Front Neurol,2020,11:554778. DOI:10.3389/fneur.2020.554778. |
[18] | TIMMERMAN N,DE KLEIJN D P V,DE BORST G J,et al. Family history and polygenic risk of cardiovascular disease:independent factors associated with secondary cardiovascular events in patients undergoing carotid endarterectomy[J]. Atherosclerosis,2020,307:121-129. DOI:10.1016/j.atherosclerosis.2020.04.013. |
[19] | 王海东. 钢铁工人颈动脉粥样硬化发病风险预测研究[D]. 唐山:华北理工大学,2020. |
[20] | 张童,郑翔,张博,等. 钢铁企业高温作业工人维生素C营养状况与血尿酸关系[J]. 环境与健康杂志,2018,35(8):715-718. DOI:10.16241/j.cnki.1001-5914.2018.08.014. |
[21] | CUI S Y,YUAN J X. Analysis on the relationship between cumulative high temperature exposure and steel workers' hypertension in a large steel mill[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2020,38(9):668-671. DOI:10.3760/cma.j.cn121094-20191027-00426. |
[22] | 徐紫菡,戴冬梅,高娇娇,等. 职业噪声和高温对心血管系统的影响[J]. 中华疾病控制杂志,2020,24(7):773-778. DOI:10.16462/j.cnki.zhjbkz.2020.07.006. |
[23] | 彭敏. 基于遗传算法的深度学习优化方法及应用[D]. 衡阳:南华大学,2020. |
[24] | 王君贤. 基于随机森林与支持向量机的心血管疾病预测研究[D]. 天津:天津大学,2018. |
[25] | 田占霄,王文通,范宏振,等. 基于认知测查的支持向量机模型对精神分裂症的判别[J]. 中国心理卫生杂志,2019,33(9):711-715. DOI:10.3969/j.issn.1000-6729.2019.09.014. |
[26] | 杨志燕,黄天宝,王树山,等. 基于支持向量机的急性百草枯中毒预后模型的建立与评价[J]. 南京医科大学学报(自然科学版),2018,38(10):1467-1471. DOI:10.7655/NYDXBNS20181031. |
[1] | WANG Yu, CHEN Yan, HAN Yuanyuan, XU Qing, CHEN Shengyue, LYU Zhibo, LU Chuan, ZHENG Mingxin, ZHAO Xin. Platelet-lymphocyte Ratio Predicts In-hospital Mortality in Elderly Patients with Acute Myocardial Infarction [J]. Chinese General Practice, 2023, 26(33): 4137-4142. |
[2] | ZHANG Juan, LI Haifen, LI Xiaoman, YAO Miao, MA Huizhen, MA Qiang. Construction of Recurrence Risk Prediction Model for Diabetic Foot Ulcer on the Basis of Logistic Regression, Support Vector Machine and BP Neural Network Model [J]. Chinese General Practice, 2023, 26(32): 4013-4019. |
[3] | ZHANG Jifang, CHEN Fang, TANG Jiawen, LI Hongliang. Predictive Value of Tumor Budding and Tumor-infiltrating Lymphocytes on Lymph Node Metastasis of Esophageal Squamous Cell Carcinoma [J]. Chinese General Practice, 2023, 26(32): 4038-4042. |
[4] | WEN Wen, ZHANG Kainan, CHEN Yulan, LI Yu, ZHANG Xiangyang. Correlation of Metabolic Indexes as Predictors with Obstructive Sleep Apnea [J]. Chinese General Practice, 2023, 26(30): 3740-3747. |
[5] | BIAN Lili, LI Xiaoxiao, DU Xueping, DAI Qinfang, WU Lin, SONG Beibei. Risk Stratification of Atherosclerotic Cardiovascular Disease and Lipid Goal Attainment in Hypertensive Patients Registered in Community [J]. Chinese General Practice, 2023, 26(27): 3388-3391. |
[6] | CHEN Yan, LYU Zhibo, ZHAO Xin. Correlation of Discordance between Remnant Lipoprotein Cholesterol and Non-high-density Lipoprotein Cholesterol and Severity of Coronary Stenosis [J]. Chinese General Practice, 2023, 26(24): 3010-3015. |
[7] | WANG Hai, WANG Zhuoli, PEI Honghong, PAN Longfei. Analysis of Risk Factors and Exploration of Predictors of Serious Cases of COVID-19 in Xi'an during the Period of 2021-2022 [J]. Chinese General Practice, 2023, 26(17): 2132-2137. |
[8] | LIANG Shanshan, ZHOU Zhihua, LI Chengcheng, CHEN Huijing, ZHOU Shangcheng. Diabetes in China: Burden Analysis between 1990 and 2019 and Incidence Prediction between 2020 and 2030 [J]. Chinese General Practice, 2023, 26(16): 2013-2019. |
[9] | CHEN Runlin, HE Tufeng, TAO Lijun, QIN Lingqiao, ZHANG Dacheng, ZHANG Yifan, ZHAO Min, ZHONG Qiuan. Effects of Cardiovascular Risk Factors on the Progression of Carotid Intima-media Thickening [J]. Chinese General Practice, 2023, 26(14): 1709-1715. |
[10] | XU Wei, XU Jiyuan, LI Maoqin, LU Fei, CHENG Shuli. Predictive Value of Color Doppler Ultrasound for Acute Kidney Injury in Patients with Septic Shock [J]. Chinese General Practice, 2023, 26(09): 1104-1111. |
[11] | LIU Taotao, LI Tianrong, WANG Xue, CHEN Jiameng, SHUAI Zhiqin, LI Lisheng, XU Shangfu. Nanoparticle- and Exosome-based Targeted Drug Delivery Systems Used in the Diagnosis and Treatment of Atherosclerosis: Opportunities and Challenges [J]. Chinese General Practice, 2023, 26(08): 903-910. |
[12] | DENG Yifan, ZHU Mixue, LIU Juan, NIE Ri, HE Shenghu, ZHANG Jing. Predictive Value of Remnant Lipoprotein-cholesterol and Atherogenic Index of Plasma for First-time Acute Myocardial Infarction in Young Adults [J]. Chinese General Practice, 2023, 26(06): 659-664. |
[13] | SUN Xiaoling, LI Zhijun. Parkinson's Syndrome Secondary to Congenital Absence of the Left Internal Carotid Artery: a Case Report and Review of the Literature [J]. Chinese General Practice, 2023, 26(03): 386-390. |
[14] | ZHAO Binji, GUO Jingyu, ZHOU Jiajin, MOU Lanxue, MU Taojuan, ZHANG Kaiyan, LYU Yunhui. Prevalence and Predictive Value of Elevated Hemoglobin in OSAHS Patients [J]. Chinese General Practice, 2023, 26(02): 184-191. |
[15] | LI Chao, YANG Yongzhong, WANG Hui, WANG Xuelin, MENG Rui, SI Zhikang, ZHENG Ziwei, CHEN Yuanyu, WU Jianhui. Development and Evaluation of Three Risk Assessment Models for Hearing Loss: a Comparative Study [J]. Chinese General Practice, 2022, 25(35): 4418-4424,4432. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 826
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||