| [12] |
DROZDOWSKA B A, SINGH S, QUINN T J. Thinking about the future:a review of prognostic scales used in acute stroke[J]. Front Neurol, 2019, 10:274. DOI: 10.3389/fneur.2019.00274.
|
| [13] |
|
| [14] |
OBERMEYER Z, EMANUEL E J. Predicting the future - big data,machine learning,and clinical medicine[J]. N Engl J Med, 2016, 375(13):1216-1219. DOI: 10.1056/NEJMp1606181.
|
| [15] |
JANIESCH C, ZSCHECH P, HEINRICH K. Machine learning and deep learning[J]. Electron Mark, 2021, 31(3):685-695. DOI: 10.1007/s12525-021-00475-2.
|
| [16] |
KOBAYASHI M, HUTTIN O, MAGNUSSON M, et al. Machine learning-derived echocardiographic phenotypes PredictHeartFailure incidence in asymptomatic individuals[J]. JACC Cardiovasc Imaging, 2022, 15(2):193-208. DOI: 10.1016/j.jcmg.2021.07.004.
|
| [17] |
SHAO H, SHI L Z, FONSECA V. Comment on segar et Al. machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes:the WATCH-DM risk score. diabetes care 2019;42:2298-2306[J]. Diabetes Care, 2020, 43(2):e25. DOI: 10.2337/dc19-1891.
|
| [18] |
SEGAR M W, JAEGER B C, PATEL K V, et al. Development and validation of machine learning-based race-specific models to predict 10-year risk of heart failure:a multicohort analysis[J]. Circulation, 2021, 143(24):2370-2383. DOI: 10.1161/CIRCULATIONAHA.120.053134.
|
| [19] |
KASHOU A H, MEDINA-INOJOSA J R, NOSEWORTHY P A, et al. Artificial intelligence-augmented electrocardiogram detection of left ventricular systolic dysfunction in the general population[J]. Mayo Clin Proc, 2021, 96(10):2576-2586. DOI: 10.1016/j.mayocp.2021.02.029.
|
| [20] |
BRATT A, KIM J, POLLIE M, et al. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification[J]. J Cardiovasc Magn Reson, 2019, 21(1):1. DOI: 10.1186/s12968-018-0509-0.
|
| [21] |
YANG F F, CHEN X T, LIN X X, et al. Automated analysis of Doppler echocardiographic videos as a screening tool for valvular heart diseases[J]. JACC Cardiovasc Imaging, 2022, 15(4):551-563. DOI: 10.1016/j.jcmg.2021.08.015.
|
| [22] |
DEBAUN M R, CHAVEZ G, FITHIAN A, et al. Artificial neural networks predict 30-day mortality after hip fracture:insights from machine learning[J]. J Am Acad Orthop Surg, 2021, 29(22):977-983. DOI: 10.5435/JAAOS-D-20-00429.
|
| [23] |
JU C S, ZHOU J D, LEE S R, et al. Derivation of an electronic frailty index for predicting short-term mortality in heart failure:a machine learning approach[J]. ESC Heart Fail, 2021, 8(4):2837-2845. DOI: 10.1002/ehf2.13358.
|
| [24] |
OBERMEYER Z, EMANUEL E J. Predicting the future - big data,machine learning,and clinical medicine[J]. N Engl J Med, 2016, 375(13):1216-1219. DOI: 10.1056/NEJMp1606181.
|
| [25] |
WANG X Y, LYU J H, MENG Z H, et al. Small vessel disease burden predicts functional outcomes in patients with acute ischemic stroke using machine learning[J]. CNS Neurosci Ther, 2023, 29(4):1024-1033. DOI: 10.1111/cns.14071.
|
| [1] |
GBD Neurology Collaborators. Global,regional,and national burden of neurological disorders,1990-2016:a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5):459-480. DOI: 10.1016/S1474-4422(18)30499-X.
|
| [2] |
|
| [3] |
|
| [4] |
HANDELMAN G S, KOK H K, CHANDRA R V, et al. eDoctor:machine learning and the future of medicine[J]. J Intern Med, 2018, 284(6):603-619. DOI: 10.1111/joim.12822.
|
| [5] |
MOONS K G M, ROYSTON P, VERGOUWE Y, et al. Prognosis and prognostic research:what,why,and how?[J]. BMJ, 2009, 338:b375. DOI: 10.1136/bmj.b375.
|
| [6] |
GONG P Y, LIU Y K, GONG Y C, et al. The association of neutrophil to lymphocyte ratio,platelet to lymphocyte ratio,and lymphocyte to monocyte ratio with post-thrombolysis early neurological outcomes in patients with acute ischemic stroke[J]. J Neuroinflammation, 2021, 18(1):51. DOI: 10.1186/s12974-021-02090-6.
|
| [7] |
FAINARDI E, BUSTO G, ROSI A, et al. Tmax volumes predict final infarct size and functional outcome in ischemic stroke patients receiving endovascular treatment[J]. Ann Neurol, 2022, 91(6):878-888. DOI: 10.1002/ana.26354.
|
| [8] |
WANG K, SHI Q Q, SUN C, et al. A machine learning model for visualization and dynamic clinical prediction of stroke recurrence in acute ischemic stroke patients:a real-world retrospective study[J]. Front Neurosci, 2023, 17:1130831. DOI: 10.3389/fnins.2023.1130831.
|
| [26] |
TONG L, SUN Y, ZHU Y Q, et al. Prognostic estimation for acute ischemic stroke patients undergoing mechanical thrombectomy within an extended therapeutic window using an interpretable machine learning model[J]. Front Neuroinform, 2023, 17:1273827. DOI: 10.3389/fninf.2023.1273827.
|
| [27] |
BI Q, GOODMAN K E, KAMINSKY J, et al. What is machine learning? A primer for the epidemiologist[J]. Am J Epidemiol, 2019, 188(12):2222-2239. DOI: 10.1093/aje/kwz189.
|
| [28] |
KRIEGESKORTE N, GOLAN T. Neural network models and deep learning[J]. Curr Biol, 2019, 29(7):R231-236. DOI: 10.1016/j.cub.2019.02.034.
|
| [29] |
HEO J, YOON J G, PARK H, et al. Machine learning-based model for prediction of outcomes in acute stroke[J]. Stroke, 2019, 50(5):1263-1265. DOI: 10.1161/STROKEAHA.118.024293.
|
| [30] |
JIANG B, ZHU G, XIE Y, et al. Prediction of clinical outcome in patients with large-vessel acute ischemic stroke:performance of machine learning versus SPAN-100[J]. AJNR Am J Neuroradiol, 2021, 42(2):240-246. DOI: 10.3174/ajnr.A6918.
|
| [31] |
|
| [32] |
BADILLO S, BANFAI B, BIRZELE F, et al. An introduction to machine learning[J]. Clin Pharmacol Ther, 2020, 107(4):871-885. DOI: 10.1002/cpt.1796.
|
| [33] |
YANN L, YOSHUA B, GEOFFREY H. Deep learning[J]. Nature, 2015, 521(7553):436-444. DOI: 10.1038/nature14539
|
| [34] |
GREENER J G, KANDATHIL S M, MOFFAT L, et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23:40-55. DOI: 10.1038/s41580-021-00407-0.
|
| [35] |
YANG Y, SHI Y Z, ZHANG N, et al. The disability rate of 5-year post-stroke and its correlation factors:a national survey in China[J]. PLoS One, 2016, 11(11):e0165341. DOI: 10.1371/journal.pone.0165341.
|
| [36] |
PARK D, JEONG E, KIM H, et al. Machine learning-based three-month outcome prediction in acute ischemic stroke:a single cerebrovascular-specialty hospital study in South Korea[J]. Diagnostics, 2021, 11(10):1909. DOI: 10.3390/diagnostics11101909.
|
| [37] |
JO H, KIM C, GWON D, et al. Combining clinical and imaging data for predicting functional outcomes after acute ischemic stroke:an automated machine learning approach[J]. Sci Rep, 2023, 13(1):16926. DOI: 10.1038/s41598-023-44201-8.
|
| [38] |
OZKARA B B, KARABACAK M, HAMAM O, et al. Prediction of functional outcome in stroke patients with proximal middle cerebral artery occlusions using machine learning models[J]. J Clin Med, 2023, 12(3):839. DOI: 10.3390/jcm12030839.
|
| [39] |
LI X, PAN X D, JIANG C L, et al. Predicting 6-month unfavorable outcome of acute ischemic stroke using machine learning[J]. Front Neurol, 2020, 11:539509. DOI: 10.3389/fneur.2020.539509.
|
| [9] |
TONG L, SUN Y, ZHU Y Q, et al. Prognostic estimation for acute ischemic stroke patients undergoing mechanical thrombectomy within an extended therapeutic window using an interpretable machine learning model[J]. Front Neuroinform, 2023, 17:1273827. DOI: 10.3389/fninf.2023.1273827.
|
| [10] |
SHEN B, YANG X, SUI R B, et al. The prognostic value of the THRIVE score,the iScore score and the ASTRAL score in Chinese patients with acute ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2018, 27(10):2877-2886. DOI: 10.1016/j.jstrokecerebrovasdis.2018.06.011.
|
| [11] |
COORAY C, MAZYA M, BOTTAI M, et al. External validation of the ASTRAL and DRAGON scores for prediction of functional outcome in stroke[J]. Stroke, 2016, 47(6):1493-1499. DOI: 10.1161/STROKEAHA.116.012802.
|
| [40] |
LEE J, PARK K M, PARK S. Interpretable machine learning for prediction of clinical outcomes in acute ischemic stroke[J]. Front Neurol, 2023, 14:1234046. DOI: 10.3389/fneur.2023.1234046.
|
| [41] |
《中国脑卒中防治报告2021》编写组,王陇德.《中国脑卒中防治报告2021》概要[J]. 中国脑血管病杂志,2023,20(11):783-793.
|
| [42] |
WANG K, GU L Y, LIU W C, et al. The predictors of death within 1 year in acute ischemic stroke patients based on machine learning[J]. Front Neurol, 2023, 14:1092534. DOI: 10.3389/fneur.2023.1092534.
|
| [43] |
LEHMANN A L C F, ALFIERI D F, DE ARAÚJO M C M, et al. Immune-inflammatory,coagulation,adhesion,and imaging biomarkers combined in machine learning models improve the prediction of death 1year after ischemic stroke[J]. Clin Exp Med, 2022, 22(1):111-123. DOI: 10.1007/s10238-021-00732-w.
|
| [44] |
ZHANG J, YUAN T, WEI S X, et al. New strategy for clinical etiologic diagnosis of acute ischemic stroke and blood biomarker discovery based on machine learning[J]. RSC Adv, 2022, 12(23):14716-14723. DOI: 10.1039/d2ra02022j.
|
| [45] |
GBD Lifetime Risk of Stroke Collaborators, FEIGIN V L, NGUYEN G, et al. Global,regional,and country-specific lifetime risks of stroke,1990 and 2016[J]. N Engl J Med, 2018, 379(25):2429-2437. DOI: 10.1056/NEJMoa1804492.
|
| [46] |
DING L L, MANE R, WU Z Z, et al. Data-driven clustering approach to identify novel phenotypes using multiple biomarkers in acute ischaemic stroke:a retrospective,multicentre cohort study[J]. EClinicalMedicine, 2022, 53:101639. DOI: 10.1016/j.eclinm.2022.101639.
|
| [47] |
MA L, FU G P, LIU R R, et al. Phenylacetyl glutamine:a novel biomarker for stroke recurrence warning[J]. BMC Neurol, 2023, 23(1):74. DOI: 10.1186/s12883-023-03118-5.
|
| [48] |
CHOI J M, SEO S Y, KIM P J, et al. Prediction of hemorrhagic transformation after ischemic stroke using machine learning[J]. J Pers Med, 2021, 11(9):863. DOI: 10.3390/jpm11090863.
|
| [49] |
REN H H, SONG H J, WANG J J, et al. A clinical-radiomics model based on noncontrast computed tomography to predict hemorrhagic transformation after stroke by machine learning:a multicenter study[J]. Insights Imaging, 2023, 14(1):52. DOI: 10.1186/s13244-023-01399-5.
|
| [50] |
LEE M, YEO N Y, AHN H J, et al. Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning[J]. Alzheimers Res Ther, 2023, 15(1):147. DOI: 10.1186/s13195-023-01289-4.
|
| [51] |
JI W C, WANG C J, CHEN H Q, et al. Predicting post-stroke cognitive impairment using machine learning:a prospective cohort study[J]. J Stroke Cerebrovasc Dis, 2023, 32(11):107354. DOI: 10.1016/j.jstrokecerebrovasdis.2023.107354.
|
| [52] |
|
| [53] |
BELTRAMIN D, LAMAS E, BOUSQUET C. Ethical issues in the utilization of black boxes for artificial intelligence in medicine[J]. Stud Health Technol Inform, 2022, 295:249-252. DOI: 10.3233/SHTI220709.
|
| [54] |
REYES M, MEIER R, PEREIRA S, et al. On the interpretability of artificial intelligence in radiology:challenges and opportunities[J]. Radiol Artif Intell, 2020, 2(3):e190043. DOI: 10.1148/ryai.2020190043.
|
| [55] |
|
| [56] |
LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nat Mach Intell, 2020, 2(1):56-67. DOI: 10.1038/s42256-019-0138-9.
|
| [57] |
HAGENDORFF T. Linking human and machine behavior:a new approach to evaluate training data quality for beneficial machine learning[J]. Minds Mach, 2021, 31(4):563-593. DOI: 10.1007/s11023-021-09573-8.
|
| [58] |
WANG M Y, LI S Y, ZHENG T, et al. Big data health care platform with multisource heterogeneous data integration and massive high-dimensional data governance for large hospitals:design,development,and application[J]. JMIR Med Inform, 2022, 10(4):e36481. DOI: 10.2196/36481.
|
| [59] |
|
| [60] |
WU Y F, FANG Y. Stroke prediction with machine learning methods among older Chinese[J]. Int J Environ Res Public Health, 2020, 17(6):1828. DOI: 10.3390/ijerph17061828.
|