[1] |
VAN OORT S, BEULENS J W J, VAN BALLEGOOIJEN A J,et al. Association of cardiovascular risk factors and lifestyle behaviors with hypertension:a Mendelian randomization study[J]. Hypertension, 2020, 76(6):1971-1979. DOI: 10.1161/HYPERTENSIONAHA.120.15761.
|
[2] |
RENGARAJAN A, GOLDBLATT H E, BEEBE D J,et al. Immune cells and inflammatory mediators cause endothelial dysfunction in a vascular microphysiological system[J]. Lab Chip, 2024, 24(6):1808-1820. DOI: 10.1039/d3lc00824j.
|
[3] |
|
[4] |
KOTLYAROV S. Immune function of endothelial cells:evolutionary aspects,molecular biology and role in atherogenesis[J]. Int J Mol Sci, 2022, 23(17):9770. DOI: 10.3390/ijms23179770.
|
[5] |
LI M, WU Y Q, YE L. The role of amino acids in endothelial biology and function[J]. Cells, 2022, 11(8):1372. DOI: 10.3390/cells11081372.
|
[6] |
HOU J, YUAN Y, CHEN P,et al. Pathological roles of oxidative stress in cardiac microvascular injury[J]. Curr Probl Cardiol, 2023, 48(1):101399. DOI: 10.1016/j.cpcardiol.2022.101399.
|
[7] |
DRI E, LAMPAS E, LAZAROS G,et al. Inflammatory mediators of endothelial dysfunction[J]. Life, 2023, 13(6):1420. DOI: 10.3390/life13061420.
|
[8] |
KULOVIC-SISSAWO A, TOCANTINS C, DINIZ M S,et al. Mitochondrial dysfunction in endothelial progenitor cells:unraveling insights from vascular endothelial cells[J]. Biology, 2024, 13(2):70. DOI: 10.3390/biology13020070.
|
[9] |
|
[10] |
YUAN D, CHU J, LIN H,et al. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis[J]. Front Cardiovasc Med, 2023, 9:1109445. DOI: 10.3389/fcvm.2022.1109445.
|
[11] |
ESSE R, BARROSO M, DE ALMEIDA I T,et al. The contribution of homocysteine metabolism disruption to endothelial dysfunction:state-of-the-art[J]. Int J Mol Sci, 2019, 20(4):867. DOI: 10.3390/ijms20040867.
|
[12] |
DU PLESSIS J P, LAMMERTYN L, SCHUTTE A E,et al. H-type hypertension among blackSouth Africa ns and the relationship between homocysteine,its genetic determinants and estimates of vascular function[J]. J Cardiovasc Dev Dis, 2022, 9(12):447. DOI: 10.3390/jcdd9120447.
|
[13] |
OPARIL S, ACELAJADO M C, BAKRIS G L,et al. Hypertension[J]. Nat Rev Dis Primers, 2018, 4:18014. DOI: 10.1038/nrdp.2018.14.
|
[14] |
|
[15] |
KRZEMIŃSKA J, WRONKA M, MŁYNARSKA E,et al. Arterial hypertension-oxidative stress and inflammation[J]. Antioxidants, 2022, 11(1):172. DOI: 10.3390/antiox11010172.
|
[16] |
PENA E, BRITO J, EL ALAM S,et al. Oxidative stress,kinase activity and inflammatory implications in right ventricular hypertrophy and heart failure under hypobaric hypoxia[J]. Int J Mol Sci, 2020, 21(17):6421. DOI: 10.3390/ijms21176421.
|
[17] |
|
[18] |
HERRMANN W, HERRMANN M. The controversial role of HCY and vitamin B deficiency in cardiovascular diseases[J]. Nutrients, 2022, 14(7):1412. DOI: 10.3390/nu14071412.
|
[19] |
BURTSCHER M, HEFTI U, HEFTI J P. High-altitude illnesses:old stories and new insights into the pathophysiology,treatment and prevention[J]. Phys Med Health Sci, 2021, 3(2):59-69. DOI: 10.1016/j.smhs.2021.04.001.
|
[20] |
FAN N, LIU C, REN M. Effect of different high altitudes on vascular endothelial function in healthy people[J]. Medicine, 2020, 99(11):e19292. DOI: 10.1097/MD.0000000000019292.
|
[21] |
FAYAZI B, TADIBI V, RANJBAR K. The role of hypoxia related hormones responses in acute mountain sickness susceptibility individuals unaccustomed to high altitude[J]. PLoS One, 2023, 18(10):e0292173. DOI: 10.1371/journal.pone.0292173.
|
[22] |
LI X, ZHANG J, LIU G,et al. High altitude hypoxia and oxidative stress:the new hope brought by free radical scavengers[J]. Life Sci, 2024, 336:122319. DOI: 10.1016/j.lfs.2023.122319.
|
[23] |
|
[24] |
PHAM K, PARIKH K, HEINRICH E C. Hypoxia and inflammation:insights from high-altitude physiology[J]. Front Physiol, 2021, 12:676782. DOI: 10.3389/fphys.2021.676782.
|
[25] |
CORTESE-ORTESE-KROTT M M. The reactive species interactome in red blood cells:oxidants,antioxidants,and molecular targets[J]. Antioxidants (Basel), 2023, 12(9):1736. DOI: 10.3390/antiox12091736.
|
[26] |
SOLIMAN M M, ALDHAHRANI A, ALTHOBAITI F,et al. Characterization of the impacts of living at high altitude in taif:oxidative stress biomarker alterations and immunohistochemical changes[J]. Curr Issues Mol Biol, 2022, 44(4):1610-1625. DOI: 10.3390/cimb44040110.
|
[27] |
JOCHMANS-LEMOINE A, REVOLLO S, VILLALPANDO G,et al. Divergent mitochondrial antioxidant activities and lung alveolar architecture in the lungs of rats and mice at high altitude[J]. Front Physiol, 2018, 9:311. DOI: 10.3389/fphys.2018.00311.
|
[28] |
|
[29] |
ZHANG Y W, YANG Y N, WU X M,et al. The association between altitude and the prevalence of hypertension among permanent highlanders[J]. Hypertens Res, 2022, 45(11):1754-1762. DOI: 10.1038/s41440-022-00985-2.
|
[30] |
YANG J, JIN Z B, CHEN J,et al. Genetic signatures of high-altitude adaptation in Tibetans[J]. Proc Natl Acad Sci U S A, 2017, 114(16):4189-4194. DOI: 10.1073/pnas.1617042114.
|
[31] |
|
[32] |
LIAO S, GUO S, MA R,et al. Association between methylenetetrahydrofolate reductase(MTHFR) C677T polymorphism and H-type hypertension:a systematic review and meta-analysis[J]. Ann Hum Genet. 2022, 86(5):278-289. DOI: 10.1111/ahg.12468.
|
[33] |
HA X Q, LI J, MAI C P,et al. The decrease of endothelial progenitor cells caused by high altitude may lead to coronary heart disease[J]. Eur Rev Med Pharmacol Sci, 2021, 25(19):6101-6108. DOI: 10.26355/eurrev_202110_26888.
|
[34] |
NARVAEZ-GUERRA O, HERRERA-ENRIQUEZ K, MEDINA-LEZAMA J,et al. Systemic hypertension at high altitude[J]. Hypertension, 2018, 72(3):567-578. DOI: 10.1161/HYPERTENSIONAHA.118.11140.
|
[35] |
LÓPEZ V, URIBE E, MORAGA F A. Activation of arginase Ⅱ by asymmetric dimethylarginine and homocysteine in hypertensive rats induced by hypoxia:a new model of nitric oxide synthesis regulation in hypertensive processes?[J]. Hypertens Res, 2021, 44(3):263-275. DOI: 10.1038/s41440-020-00574-1.
|
[36] |
SUN P, WANG Q, ZHANG Y,et al. Association between homocysteine level and blood pressure traits among Tibetans:A cross-sectional study in China[J]. Medicine (Baltimore), 2019, 98(27):e16085. DOI: 10.1097/MD.0000000000016085.
|
[37] |
MINGJI C, ONAKPOYA IJ, PERERA R,et al. Relationship between altitude and the prevalence of hypertension in Tibet:a systematic review[J]. Heart. 2015, 101(13):1054-1060. DOI: 10.1136/heartjnl-2014-307158.
|
[38] |
索朗德吉,次仁仲嘎. 西藏地区不同人群H型高血压患病率及影响因素分析[J]. 西藏科技,2023(3):71-75.
|
[39] |
AN X,DU X,YANG B,et al. Prognostic impact of serum homocysteine-lowering therapy on patients with hemorrhagic stroke and its influence on national institutes of health stroke scale and China stroke scale scores[J]. Altern Ther Health Med,2024,30(1):381-385.
|
[40] |
CHEN P, TANG L, SONG Y,et al. Association of folic acid dosage with circulating unmetabolized folic acid in Chinese adults with H-type hypertension:a multicenter,double-blind,randomized controlled trial[J]. Front Nutr, 2023, 14(10):1191610. DOI: 10.3389/fnut.2023.1191610.
|
[41] |
JI D, LUO C, LIU J,et al. Insufficient S-sulfhydration of methylenetetrahydrofolate reductase contributes to the progress of hyperhomocysteinemia[J]. Antioxid Redox Signal, 2022, 36(1-3):1-14. DOI: 10.1089/ars.2021.0029.
|
[42] |
GONZÁLEZ-LAMUÑO D, ARRIETA-BLANCO F J, FUENTES E D,et al. Hyperhomocysteinemia in adult patients:a treatable metabolic condition[J]. Nutrients, 2023, 16(1):135. DOI: 10.3390/nu16010135.
|
[43] |
|
[44] |
GADANEC L K, ANDERSSON U, APOSTOLOPOULOS V,et al. Glycyrrhizic acid inhibits high-mobility group box-1 and homocysteine-induced vascular dysfunction[J]. Nutrients, 2023, 15(14):3186. DOI: 10.3390/nu15143186.
|
[45] |
KONG J Y, DENG Y. Pirfenidone alleviates vascular intima injury caused by hyperhomocysteinemia[J]. Rev Port Cardiol, 2022, 41(10):813-819. DOI: 10.1016/j.repc.2021.12.011.
|
[46] |
DE LUCA M, VALVANO A, STRIANO P,et al. Effects of three-months folate supplementation on early vascular abnormalities in hyperhomocysteinemic patients with epilepsy[J]. Seizure, 2022, 103:120-125. DOI: 10.1016/j.seizure.2022.11.009.
|
[47] |
PENA E, EL ALAM S, SIQUES P,et al. Oxidative stress and diseases associated with high-altitude exposure[J]. Antioxidants, 2022, 11(2):267. DOI: 10.3390/antiox11020267.
|
[48] |
YOUN JY, ZHANG J, ZHANG Y,et al. Oxidative stress in atrial fibrillation:an emerging role of NADPH oxidase[J]. J Mol Cell Cardiol, 2013, 62:72-79. DOI: 10.1016/j.yjmcc.2013.04.019.
|
[49] |
CHEN D, ZANG Y H, QIU Y,et al. BCL6 attenuates proliferation and oxidative stress of vascular smooth muscle cells in hypertension[J]. Oxid Med Cell Longev, 2019:5018410. DOI: 10.1155/2019/5018410.
|
[50] |
BASU U, CASE AJ, LIU J,et al. Redox-sensitive calcium/calmodulin-dependent protein kinase Ⅱα in angiotensin Ⅱ intra-neuronal signaling and hypertension[J]. Redox Biol, 2019, 27:101230. DOI: 10.1016/j.redox.2019.101230.
|
[51] |
STONE R M, AINSLIE P N, TREMBLAY J C,et al. GLOBAL REACH 2018:intra-arterial vitamin C improves endothelial-dependent vasodilatory function in humans at high altitude[J]. J Physiol, 2022, 600(6):1373-1383. DOI: 10.1113/JP282281.
|
[52] |
AMPONSAH-OFFEH M, DIABA-NUHOHO P, SPEIER S,et al. Oxidative stress,antioxidants and hypertension[J]. Antioxidants, 2023, 12(2):281. DOI: 10.3390/antiox12020281.
|