[1] |
|
[2] |
|
[3] |
|
[4] |
CADENAS S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117:76-89. DOI: 10.1016/j.freeradbiomed.2018.01.024.
|
[5] |
|
[6] |
VAN DER POL A, VAN GILST W H, VOORS A A,et al. Treating oxidative stress in heart failure:past,present and future[J]. Eur J Heart Fail, 2019, 21(4):425-435. DOI: 10.1002/ejhf.1320.
|
[7] |
SOORI R, AMINI A A, CHOOBINEH S,et al. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats[J]. Arch Physiol Biochem, 2022, 128(1):1-6. DOI: 10.1080/13813455.2019.1660370.
|
[8] |
XI Y, LI Y X, REN W J,et al. ELABELA-APJ-akt/YAP signaling axis:a novel mechanism of aerobic exercise in cardioprotection of myocardial infarction rats[J]. Med Sci Sports Exerc, 2023, 55(7):1172-1183. DOI: 10.1249/MSS.0000000000003143.
|
[9] |
PAGAN L U, DAMATTO R L, CEZAR M D,et al. Long-term low intensity physical exercise attenuates heart failure development in aging spontaneously hypertensive rats[J]. Cell Physiol Biochem, 2015, 36(1):61-74. DOI: 10.1159/000374053.
|
[10] |
ZHU X J, CHEN L H, LI J H. The effects of aerobic exercise on plasma adiponectin level and adiponectin-related protein expression in myocardial tissue of ApoE(-/-)mice[J]. J Sports Sci Med,2015,14(4):877-882.
|
[11] |
HU D Y. New guidelines and evidence for prevention and treatment of dyslipidemia and atherosclerotic cardiovascular disease in China[J]. Chronic Dis Transl Med, 2016, 3(2):73-74. DOI: 10.1016/j.cdtm.2016.11.001.
|
[12] |
CHEN Y, HUANG Q, FENG Y. Exercise improves cardiac function in the aged rats with myocardial infarction[J]. Physiol Res, 2023, 72(1):27-35. DOI: 10.33549/physiolres.934966.
|
[13] |
|
[14] |
|
[15] |
REN C Z, ZHAO X K, LIU K,et al. Research progress of natural medicine Astragalus mongholicus Bunge in treatment of myocardial fibrosis[J]. J Ethnopharmacol, 2023, 305:116128. DOI: 10.1016/j.jep.2022.116128.
|
[16] |
JANOUDI A, SHAMOUN F E, KALAVAKUNTA J K,et al. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque[J]. Eur Heart J, 2016, 37(25):1959-1967. DOI: 10.1093/eurheartj/ehv653.
|
[17] |
RALSTON J C, LYONS C L, KENNEDY E B,et al. Fatty acids and NLRP3 inflammasome-mediated inflammation in metabolic tissues[J]. Annu Rev Nutr, 2017, 37:77-102. DOI: 10.1146/annurev-nutr-071816-064836.
|
[18] |
LV S L, ZENG Z F, GAN W Q,et al. Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation[J]. Acta Pharmacol Sin, 2021, 42(12):2016-2032. DOI: 10.1038/s41401-021-00703-7.
|
[19] |
NADLONEK N, LEE J H, REECE T B,et al. Interleukin-1 Beta induces an inflammatory phenotype in human aortic valve interstitial cells through nuclear factor kappa Beta[J]. Ann Thorac Surg, 2013, 96(1):155-162. DOI: 10.1016/j.athoracsur.2013.04.013.
|
[20] |
WANG Y L, LI Y L, WU Y N,et al. 5TNF-α and IL-1β neutralization ameliorates angiotensin II-induced cardiac damage in male mice[J]. Endocrinology, 2014, 155(7):2677-2687. DOI: 10.1210/en.2013-2065.
|
[21] |
|
[22] |
CUI X N, WANG K, ZHANG J H,et al. Aerobic exercise ameliorates myocardial fibrosis via affecting vitamin D receptor and transforming growth factor-β1 signaling in vitamin D-deficient mice[J]. Nutrients, 2023, 15(3):741. DOI: 10.3390/nu15030741.
|
[23] |
WU X Y, ZHU J, WEI Y L,et al. MicroRNA-663 participates in myocardial fibrosis through interaction with TGF-β1[J]. Exp Ther Med, 2019, 18(4):3172-3176. DOI: 10.3892/etm.2019.7902.
|
[24] |
SUN J, ZHU J X, CHEN L,et al. Forsythiaside B inhibits myocardial fibrosis via down regulating TGF-β1/Smad signaling pathway[J]. Eur J Pharmacol, 2021, 908:174354. DOI: 10.1016/j.ejphar.2021.174354.
|
[25] |
刘亚,刘霞,邓鹏辉,等. 运动对糖尿病心肌纤维化大鼠心肌Ⅰ、Ⅲ型胶原及血管紧张素Ⅱ/转化生长因子β1/Smad2通路的影响[J]. 中国组织工程研究,2022,26(26):4173-4179.
|
[26] |
WANG S Q, LI D, YUAN Y. Long-term moderate intensity exercise alleviates myocardial fibrosis in type 2 diabetic rats via inhibitions of oxidative stress and TGF-β1/Smad pathway[J]. J Physiol Sci, 2019, 69(6):861-873. DOI: 10.1007/s12576-019-00696-3.
|
[27] |
KOGA K, YOKOI H, MORI K,et al. microRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy[J]. Diabetologia, 2015, 58(9):2169-2180. DOI: 10.1007/s00125-015-3642-4.
|
[28] |
HORI M, NISHIDA K. Oxidative stress and left ventricular remodelling after myocardial infarction[J]. Cardiovasc Res, 2009, 81(3):457-464. DOI: 10.1093/cvr/cvn335.
|
[29] |
JIANG F, LIU G S, DUSTING G J,et al. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses[J]. Redox Biol, 2014, 2:267-272. DOI: 10.1016/j.redox.2014.01.012.
|
[30] |
WEI L F, ZHANG H M, WANG S S,et al. Changes of MDA and SOD in brain tissue after secondary brain injury with seawater immersion in rats[J]. Turk Neurosurg, 2016, 26(3):384-388. DOI: 10.5137/1019-5149.JTN.8265-13.1.
|
[31] |
|