[1] |
ADELOYE D, AGARWAL D, BARNES P J,et al. Research priorities to address the global burden of chronic obstructive pulmonary disease (COPD) in the next decade[J]. J Glob Health, 2021, 11:15003. DOI: 10.7189/jogh.11.15003.
|
[2] |
Gbd Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases,1990-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Respir Med, 2020, 8(6):585-596. DOI: 10.1016/S2213-2600(20)30105-3.
|
[3] |
WANG C, XU J Y, YANG L,et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health[CPH]study):a national cross-sectional study[J]. Lancet, 2018, 391(10131):1706-1717. DOI: 10.1016/S0140-6736(18)30841-9.
|
[4] |
LIU W, WANG W, LIU J M,et al. Trend of mortality and years of life lost due to chronic obstructive pulmonary disease in China and its provinces,2005-2020[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16:2973-2981. DOI: 10.2147/COPD.S330792.
|
[5] |
WU Y, SONG P, LIN S,et al. Global burden of respiratory diseases attributable to ambient particulate matter pollution:findings from the global burden of disease study 2019[J]. Front Public Health, 2021, 9:740800. DOI: 10.3389/fpubh.2021.740800.
|
[6] |
MKOROMBINDO T, TRAN-NGUYEN T K, YUAN K Y,et al. HLA-C and KIR permutations influence chronic obstructive pulmonary disease risk[J]. JCI Insight, 2021, 6(19):e150187. DOI: 10.1172/jci.insight.150187.
|
[7] |
ESPIRITO SANTO C, CASEIRO C, MARTINS M J,et al. Gut microbiota,in the halfway between nutrition and lung function[J]. Nutrients, 2021, 13(5):1716. DOI: 10.3390/nu13051716.
|
[8] |
CHARLSON E S, BITTINGER K, HAAS A R,et al. Topographical continuity of bacterial populations in the healthy human respiratory tract[J]. Am J Respir Crit Care Med, 2011, 184(8):957-963. DOI: 10.1164/rccm.201104-0655OC.
|
[9] |
BUDDEN K F, GELLATLY S L, WOOD D L,et al. Emerging pathogenic links between microbiota and the gut-lung axis[J]. Nat Rev Microbiol, 2017, 15(1):55-63. DOI: 10.1038/nrmicro.2016.142.
|
[10] |
VENKATARAMAN A, BASSIS C M, BECK J M,et al. Application of a neutral community model to assess structuring of the human lung microbiome[J]. Mbio, 2015, 6(1):e02284-02214. DOI: 10.1128/mBio.02284-14.
|
[11] |
BASSIS C M, ERB-DOWNWARD J R, DICKSON R P,et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals[J]. mBio, 2015, 6(2):e00037. DOI: 10.1128/mBio.00037-15.
|
[12] |
HILTY M, BURKE C, PEDRO H,et al. Disordered microbial communities in asthmatic airways[J]. PLoS One, 2010, 5(1):e8578. DOI: 10.1371/journal.pone.0008578.
|
[13] |
BECK J M, YOUNG V B, HUFFNAGLE G B. The microbiome of the lung[J]. Transl Res, 2012, 160(4):258-266. DOI: 10.1016/j.trsl.2012.02.005.
|
[14] |
NIELSEN R, XUE Y X, JONASSEN I,et al. Repeated bronchoscopy in health and obstructive lung disease:is the airway microbiome stable?[J]. BMC Pulm Med, 2021, 21(1):342. DOI: 10.1186/s12890-021-01687-0.
|
[15] |
KNUDSEN K S, LEHMANN S, NIELSEN R,et al. The lower airways microbiome and antimicrobial peptides in idiopathic pulmonary fibrosis differ from chronic obstructive pulmonary disease[J]. PLoS One, 2022, 17(1):e0262082. DOI: 10.1371/journal.pone.0262082.
|
[16] |
WANG Z, BAFADHEL M, HALDAR K,et al. Lung microbiome dynamics in COPD exacerbations[J]. Eur Respir J, 2016, 47(4):1082-1092. DOI: 10.1183/13993003.01406-2015.
|
[17] |
LEUNG J M, TIEW P Y, MAC AOG?IN M,et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD[J]. Respirology, 2017, 22(4):634-650. DOI: 10.1111/resp.13032.
|
[18] |
MAYHEW D, DEVOS N, LAMBERT C,et al. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations[J]. Thorax, 2018, 73(5):422-430. DOI: 10.1136/thoraxjnl-2017-210408.
|
[19] |
PRAGMAN A A, KNUTSON K A, GOULD T J,et al. Chronic obstructive pulmonary disease upper airway microbiota alpha diversity is associated with exacerbation phenotype:a case-control observational study[J]. Respir Res, 2019, 20(1):114. DOI: 10.1186/s12931-019-1080-4.
|
[20] |
ZHU W X, WU Y L, LIU H,et al. Gut-lung axis:microbial crosstalk in pediatric respiratory tract infections[J]. Front Immunol, 2021, 12:741233. DOI: 10.3389/fimmu.2021.741233.
|
[21] |
ARUMUGAM M, RAES J, PELLETIER E,et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346):174-180. DOI: 10.1038/nature09944.
|
[22] |
EL MOUZAN M, AL-HUSSAINI A A, AL SARKHY A,et al. Intestinal microbiota profile in healthy Saudi children:the bacterial domain[J]. Saudi J Gastroenterol, 2022, 28(4):312-317. DOI: 10.4103/sjg.sjg_585_21.
|
[23] |
ABDULLAH B, DAUD S, AAZMI M S,et al. Gut microbiota in pregnant Malaysian women:a comparison between trimesters,body mass index and gestational diabetes status[J]. BMC Pregnancy Childbirth, 2022, 22(1):152. DOI: 10.1186/s12884-022-04472-x.
|
[24] |
TANG Q, JIN G, WANG G,et al. Current sampling methods for gut microbiota:a call for more precise devices[J]. Front Cell Infect Microbiol, 2020, 10:151. DOI: 10.3389/fcimb.2020.00151.
|
[25] |
ANANYA F N, AHAMMED M R, FAHEM M M,et al. Association of intestinal microbial dysbiosis with chronic obstructive pulmonary disease[J]. Cureus, 2021, 13(11):e19343. DOI: 10.7759/cureus.19343.
|
[26] |
SUN Z, ZHU Q L, SHEN Y,et al. Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations[J]. Kaohsiung J Med Sci, 2020, 36(2):107-113. DOI: 10.1002/kjm2.12147.
|
[27] |
BOWERMAN K L, REHMAN S F, VAUGHAN A,et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease[J]. Nat Commun, 2020, 11(1):5886. DOI: 10.1038/s41467-020-19701-0.
|
[28] |
LI N J, DAI Z L, WANG Z,et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease[J]. Respir Res, 2021, 22(1):274. DOI: 10.1186/s12931-021-01872-z.
|
[29] |
|
[30] |
|
[31] |
ESPIRITO SANTO C, CASEIRO C, MARTINS M J,et al. Gut microbiota,in the halfway between nutrition and lung function[J]. Nutrients, 2021, 13(5):1716. DOI: 10.3390/nu13051716.
|
[32] |
BINGULA R, FILAIRE M, RADOSEVIC-ROBIN N,et al. Desired turbulence? Gut-lung axis,immunity,and lung cancer[J]. J Oncol, 2017, 2017:5035371. DOI: 10.1155/2017/5035371.
|
[33] |
DICKSON R P, SINGER B H, NEWSTEAD M W,et al. Enrichment of the lung microbiome with gut bacteria in Sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1(10):16113. DOI: 10.1038/nmicrobiol.2016.113.
|
[34] |
MCALEER J P, NGUYEN N L, CHEN K,et al. Pulmonary Th17 antifungal immunity is regulated by the gut microbiome[J]. J Immunol, 2016, 197(1):97-107. DOI: 10.4049/jimmunol.1502566.
|
[35] |
PERRONE E E, JUNG E, BREED E,et al. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis[J]. Shock, 2012, 38(1):68-75. DOI: 10.1097/SHK.0b013e318259abdb.
|
[36] |
SZE M A, TSURUTA M, YANG S W,et al. Changes in the bacterial microbiota in gut,blood,and lungs following acute LPS instillation into mice lungs[J]. PLoS One, 2014, 9(10):e111228. DOI: 10.1371/journal.pone.0111228.
|
[37] |
|
[38] |
STEFAN K L, KIM M V, IWASAKI A,et al. Commensal microbiota modulation of natural resistance to virus infection[J]. Cell, 2020, 183(5):1312-1324.e10. DOI: 10.1016/j.cell.2020.10.047.
|
[39] |
PU Q Q, LIN P, GAO P,et al. Gut microbiota regulate gut-lung axis inflammatory responses by mediating ILC2 compartmental migration[J]. J Immunol, 2021, 207(1):257-267. DOI: 10.4049/jimmunol.2001304.
|
[40] |
WANG J, LI F Q, WEI H M,et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation[J]. J Exp Med, 2014, 211(12):2397-2410. DOI: 10.1084/jem.20140625.
|
[41] |
ICHINOHE T, PANG I K, KUMAMOTO Y,et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection[J]. Proc Natl Acad Sci USA, 2011, 108(13):5354-5359. DOI: 10.1073/pnas.1019378108.
|
[42] |
PAGE M J, KELL D B, PRETORIUS E. The role of lipopolysaccharide-induced cell signalling in chronic inflammation[J]. Chronic Stress (Thousand Oaks), 2022, 6:24705470221076390. DOI: 10.1177/24705470221076390.
|
[43] |
LIU Y R, KUANG D, LI D,et al. Roles of the gut microbiota in severe SARS-CoV-2 infection[J]. Cytokine Growth Factor Rev, 2022, 63:98-107. DOI: 10.1016/j.cytogfr.2022.01.007.
|
[44] |
DABROWSKI A N, SHRIVASTAV A, CONRAD C,et al. Peptidoglycan recognition protein 4 limits bacterial clearance and inflammation in lungs by control of the gut microbiota[J]. Front Immunol, 2019, 10:2106. DOI: 10.3389/fimmu.2019.02106.
|
[45] |
BLANCO-PEREZ F, STEIGERWALD H, SCHULKE S,et al. The dietary fiber pectin:health benefits and potential for the treatment of allergies by modulation of gut microbiota[J]. Curr Allergy Asthma Rep, 2021, 21(10):43. DOI: 10.1007/s11882-021-01020-z.
|
[46] |
ANTUNES K H, STEIN R T, FRANCESCHINA C,et al. Short-chain fatty acid acetate triggers antiviral response mediated by RIG-I in cells from infants with respiratory syncytial virus bronchiolitis[J]. EBio Medicine, 2022, 77:103891. DOI: 10.1016/j.ebiom.2022.103891.
|
[47] |
CHEN Z Y, XIAO H W, DONG J L,et al. Gut microbiota-derived PGF2α fights against radiation-induced lung toxicity through the MAPK/NF-κB pathway[J]. Antioxidants (Basel), 2021, 11(1):65. DOI: 10.3390/antiox11010065.
|
[48] |
DANIEL N, NACHBAR R T, TRAN T T T,et al. Gut microbiota and fermentation-derived branched chain hydroxy acids mediate health benefits of yogurt consumption in obese mice[J]. Nat Commun, 2022, 13(1):1343. DOI: 10.1038/s41467-022-29005-0.
|
[49] |
NEGATU D A, GENGENBACHER M, DARTOIS V,et al. Indole propionic acid,an unusual antibiotic produced by the gut microbiota,with anti-inflammatory and antioxidant properties[J]. Front Microbiol, 2020, 11:575586. DOI: 10.3389/fmicb.2020.575586.
|
[50] |
CHEN Z Y, WANG B, DONG J L,et al. Gut microbiota-derived l-histidine/imidazole propionate axis fights against the radiation-induced cardiopulmonary injury[J]. Int J Mol Sci, 2021, 22(21):11436. DOI: 10.3390/ijms222111436.
|
[51] |
TIAN X L, HELLMAN J, HORSWILL A R,et al. Elevated gut microbiome-derived propionate levels are associated with reduced sterile lung inflammation and bacterial immunity in mice[J]. Front Microbiol, 2019, 10:159. DOI: 10.3389/fmicb.2019.00159.
|
[52] |
LIU Q, TIAN X L, MARUYAMA D,et al. Lung immune tone via gut-lung axis:gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1β,FFAR2,and FFAR3 expression[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(1):L65-78. DOI: 10.1152/ajplung.00421.2020.
|
[53] |
KAGEYAMA Y, NISHIZAKI Y, AIDA K,et al. Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID-19:a single-arm,double-blind,prospective trial combined with an in vitro cytokine response assay[J]. Exp Ther Med, 2022, 23(1):20. DOI: 10.3892/etm.2021.10942.
|
[54] |
JAMALKANDI S A, AHMADI A, AHRARI I,et al. Oral and nasal probiotic administration for the prevention and alleviation of allergic diseases,asthma and chronic obstructive pulmonary disease[J]. Nutr Res Rev, 2021, 34(1):1-16. DOI: 10.1017/S0954422420000116.
|
[55] |
VAN DEN BROEK M F L, DE BOECK I, CLAES I J J,et al. Multifactorial inhibition of lactobacilli against the respiratory tract pathogen Moraxella catarrhalis[J]. Benef Microbes, 2018, 9(3):429-439. DOI: 10.3920/BM2017.0101.
|
[56] |
|
[57] |
|
[58] |
CARVALHO J L, MIRANDA M, FIALHO A K,et al. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice:relevance to inflammatory markers in human bronchial epithelial cells[J]. PLoS One, 2020, 15(4):e0225560. DOI: 10.1371/journal.pone.0225560.
|
[59] |
JANG Y O, LEE S H, CHOI J J,et al. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis[J]. Exp Mol Med, 2020, 52(7):1128-1139. DOI: 10.1038/s12276-020-0469-y.
|
[60] |
TROMPETTE A, GOLLWITZER E S, YADAVA K,et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20(2):159-166. DOI: 10.1038/nm.3444.
|
[61] |
BLANCO-PEREZ F, STEIGERWALD H, SCHULKE S,et al. The dietary fiber pectin:health benefits and potential for the treatment of allergies by modulation of gut microbiota[J]. Curr Allergy Asthma Rep, 2021, 21(10):43. DOI: 10.1007/s11882-021-01020-z.
|
[62] |
JANG Y O, KIM O H, KIM S J,et al. High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism[J]. Sci Rep, 2021, 11(1):7008. DOI: 10.1038/s41598-021-86404-x.
|
[63] |
SZMIDT M K, KALUZA J, HARRIS H R,et al. Long-term dietary fiber intake and risk of chronic obstructive pulmonary disease:a prospective cohort study of women[J]. Eur J Nutr, 2020, 59(5):1869-1879. DOI: 10.1007/s00394-019-02038-w.
|
[64] |
YONG W X, ZHANG L Y, CHEN Y X,et al. Jianpi Huatan Tongfu Granule alleviates inflammation and improves intestinal flora in patients with acute exacerbation of chronic obstructive pulmonary disease[J]. J Int Med Res, 2020, 48(4):300060520909235. DOI: 10.1177/0300060520909235.
|
[65] |
JIAO J, TANG Q, WANG T J,et al. The therapeutic effect of Xuanbai Chengqi Decoction on chronic obstructive pulmonary disease with excessive heat in the lung and fu-organs based on gut and lung microbiota as well as metabolic profiles[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2022, 1198:123250. DOI: 10.1016/j.jchromb.2022.123250.
|
[66] |
WANG Y A, LI N, LI Q Y,et al. Xuanbai Chengqi Decoction ameliorates pulmonary inflammation via reshaping gut microbiota and rectifying Th17/treg imbalance in a murine model of chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16:3317-3335. DOI: 10.2147/COPD.S337181.
|