[1] |
LIM J S, LEE J J, WOO C W. Post-stroke cognitive impairment:pathophysiological insights into brain disconnectome from advanced neuroimaging analysis techniques[J]. J Stroke, 2021, 23(3):297-311. DOI: 10.5853/jos.2021.02376.
|
[2] |
ROST N S, BRODTMANN A, PASE M P,et al. Post-stroke cognitive impairment and dementia[J]. Circ Res, 2022, 130(8):1252-1271. DOI: 10.1161/circresaha.122.319951.
|
[3] |
YANG J L, MUKDA S, CHEN S D. Diverse roles of mitochondria in ischemic stroke[J]. Redox Biol, 2018, 16:263-275. DOI: 10.1016/j.redox.2018.03.002.
|
[4] |
NORAT P, SOLDOZY S, SOKOLOWSKI J D,et al. Mitochondrial dysfunction in neurological disorders:exploring mitochondrial transplantation[J]. NPJ Regen Med, 2020, 5(1):22. DOI: 10.1038/s41536-020-00107-x.
|
[5] |
LIGHTOWLERS R N, CHRZANOWSKA-LIGHTOWLERS Z M, RUSSELL O M. Mitochondrial transplantation-a possible therapeutic for mitochondrial dysfunction? Mitochondrial transfer is a potential cure for many diseases but proof of efficacy and safety is still lacking[J]. EMBO Rep, 2020, 21(9):e50964. DOI: 10.15252/embr.202050964.
|
[6] |
VIGNAIS M L, CAICEDO A, BRONDELLO J M,et al. Cell connections by tunneling nanotubes:effects of mitochondrial trafficking on target cell metabolism,homeostasis,and response to therapy[J]. Stem Cells Int, 2017, 2017:6917941. DOI: 10.1155/2017/6917941.
|
[7] |
ZHANG S L, KAZANIETZ M G, COOKE M. Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease[J]. Am J Physiol Cell Physiol, 2020, 319(5):C877-884. DOI: 10.1152/ajpcell.00351.2020.
|
[8] |
NAHACKA Z, ZOBALOVA R, DUBISOVA M,et al. Miro proteins connect mitochondrial function and intercellular transport[J]. Crit Rev Biochem Mol Biol, 2021, 56(4):401-425. DOI: 10.1080/10409238.2021.1925216.
|
[9] |
PALIWAL S, CHAUDHURI R, AGRAWAL A,et al. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J]. J Biomed Sci, 2018, 25(1):31. DOI: 10.1186/s12929-018-0429-1.
|
[10] |
TSENG N, LAMBIE S C, HUYNH C Q,et al. Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro:the role of Miro1[J]. J Cereb Blood Flow Metab, 2021, 41(4):761-770. DOI: 10.1177/0271678X20928147.
|
[11] |
ROSTAMI J, MOTHES T, KOLAHDOUZAN M,et al. Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates[J]. J Neuroinflammation, 2021, 18(1):124. DOI: 10.1186/s12974-021-02158-3.
|
[12] |
WANG Y, CUI J, SUN X,et al. Tunneling-nanotube development in astrocytes depends on p53 activation[J]. Cell Death Differ, 2011, 18(4):732-742. DOI: 10.1038/cdd.2010.147.
|
[13] |
WANG X, BUKORESHTLIEV N V, GERDES H H. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes[J]. PLoS One, 2012, 7(10):e47429. DOI: 10.1371/journal.pone.0047429.
|
[14] |
YAO Y, FAN X L, JIANG D,et al. Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation[J]. Stem Cell Reports, 2018, 11(5):1120-1135. DOI: 10.1016/j.stemcr.2018.09.012.
|
[15] |
VARGAS J Y, LORIA F, WU Y J,et al. The Wnt/Ca 2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes[J]. EMBO J, 2019, 38(23):e101230. DOI: 10.15252/embj.2018101230.
|
[16] |
FENG Y H, ZHU R J, SHEN J,et al. Human bone marrow mesenchymal stem cells rescue endothelial cells experiencing chemotherapy stress by mitochondrial transfer via tunneling nanotubes[J]. Stem Cells Dev, 2019, 28(10):674-682. DOI: 10.1089/scd.2018.0248.
|
[17] |
TISHCHENKO A, AZORÍN D D, VIDAL-BRIME L,et al. Cx43 and associated cell signaling pathways regulate tunneling nanotubes in breast cancer cells[J]. Cancers (Basel), 2020, 12(10):2798. DOI: 10.3390/cancers12102798.
|
[18] |
ZABOROWSKI M P, BALAJ L, BREAKEFIELD X O,et al. Extracellular vesicles:composition,biological relevance,and methods of study[J]. Bioscience, 2015, 65(8):783-797. DOI: 10.1093/biosci/biv084.
|
[19] |
PERUZZOTTI-JAMETTI L, BERNSTOCK J D, WILLIS C M,et al. Neural stem cells traffic functional mitochondria via extracellular vesicles[J]. PLoS Biol, 2021, 19(4):e3001166. DOI: 10.1371/journal.pbio.3001166.
|
[20] |
VARCIANNA A, MYSZCZYNSKA M A, CASTELLI L M,et al. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS[J]. EBioMedicine, 2019, 40:626-635. DOI: 10.1016/j.ebiom.2018.11.067.
|
[21] |
D'ACUNZO P, PÉREZ-GONZÁLEZ R, KIM Y,et al. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome[J]. Sci Adv, 2021, 7(7):eabe5085. DOI: 10.1126/sciadv.abe5085.
|
[22] |
LU T Y, ZHANG J B, CAI J Y,et al. Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemia-reperfusion injury by transferring mitochondria to modulate the formation of neutrophil extracellular traps[J]. Biomaterials, 2022, 284:121486. DOI: 10.1016/j.biomaterials.2022.121486.
|
[23] |
MOON G J, SUNG J H, KIM D H,et al. Application of mesenchymal stem cell-derived extracellular vesicles for stroke:biodistribution and microRNA study[J]. Transl Stroke Res, 2019, 10(5):509-521. DOI: 10.1007/s12975-018-0668-1.
|
[24] |
DAVE K M, STOLZ D B, VENNA V R,et al. Mitochondria-containing extracellular vesicles (EV) reduce mouse brain infarct sizes and EV/HSP27 protect ischemic brain endothelial cultures[J]. J Control Release, 2023, 354:368-393. DOI: 10.1016/j.jconrel.2023.01.025.
|
[25] |
PARK J H, NAKAMURA Y, LI W L,et al. Effects of O-GlcNAcylation on functional mitochondrial transfer from astrocytes[J]. J Cereb Blood Flow Metab, 2021, 41(7):1523-1535. DOI: 10.1177/0271678X20969588.
|
[26] |
ZOROVA L D, KOVALCHUK S I, POPKOV V A,et al. Do extracellular vesicles derived from mesenchymal stem cells contain functional mitochondria?[J]. Int J Mol Sci, 2022, 23(13):7408. DOI: 10.3390/ijms23137408.
|
[27] |
BELL C L, SHAKESPEARE T I, SMITH A R,et al. Visualization of annular gap junction vesicle processing:the interplay between annular gap junctions and mitochondria[J]. Int J Mol Sci, 2018, 20(1):44. DOI: 10.3390/ijms20010044.
|
[28] |
LI H, WANG C, HE T,et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction[J]. Theranostics, 2019, 9(7):2017-2035. DOI: 10.7150/thno.29400.
|
[29] |
WHISENANT C C, SHAW R M. Internal translation of Gja1 (Connexin43) to produce GJA1-20k:implications for arrhythmia and ischemic-preconditioning[J]. Front Physiol, 2022, 13:1058954. DOI: 10.3389/fphys.2022.1058954.
|
[30] |
FU Y, ZHANG S S, XIAO S H,et al. Cx43 isoform GJA1-20k promotes microtubule dependent mitochondrial transport[J]. Front Physiol, 2017, 8:905. DOI: 10.3389/fphys.2017.00905.
|
[31] |
REN D B, ZHENG P, ZOU S F,et al. GJA1-20K enhances mitochondria transfer from astrocytes to neurons via Cx43-TnTs after traumatic brain injury[J]. Cell Mol Neurobiol, 2022, 42(6):1887-1895. DOI: 10.1007/s10571-021-01070-x.
|
[32] |
XIAO S H, SHIMURA D, BAUM R,et al. Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias[J]. J Clin Invest, 2020, 130(9):4858-4870. DOI: 10.1172/JCI134682.
|
[33] |
WADA K I, HOSOKAWA K, ITO Y,et al. Quantitative control of mitochondria transfer between live single cells using a microfluidic device[J]. Biol Open, 2017, 6(12):1960-1965. DOI: 10.1242/bio.024869.
|
[34] |
MOHAMMADALIPOUR A, DUMBALI S P, WENZEL P L. Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy[J]. Front Cell Dev Biol, 2020, 8:603292. DOI: 10.3389/fcell.2020.603292.
|
[35] |
NYGREN J M, LIUBA K, BREITBACH M,et al. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion[J]. Nat Cell Biol, 2008, 10(5):584-592. DOI: 10.1038/ncb1721.
|
[36] |
MAEDA A, FADEEL B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals[J]. Cell Death Dis, 2014, 5(7):e1312. DOI: 10.1038/cddis.2014.277.
|
[37] |
BOUDREAU L H, DUCHEZ A C, CLOUTIER N,et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation[J]. Blood, 2014, 124(14):2173-2183. DOI: 10.1182/blood-2014-05-573543.
|
[38] |
ENGLISH K, SHEPHERD A, UZOR N E,et al. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer[J]. Acta Neuropathol Commun, 2020, 8(1):36. DOI: 10.1186/s40478-020-00897-7.
|
[39] |
LIU Z H, SUN Y, QI Z T,et al. Mitochondrial transfer/transplantation:an emerging therapeutic approach for multiple diseases[J]. Cell Biosci, 2022, 12(1):66. DOI: 10.1186/s13578-022-00805-7.
|
[40] |
GAO J J, QIN A, LIU D L,et al. Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network[J]. Sci Adv, 2019, 5(11):eaaw7215. DOI: 10.1126/sciadv.aaw7215.
|
[41] |
HAYAKAWA K, ESPOSITO E, WANG X H,et al. Transfer of mitochondria from astrocytes to neurons after stroke[J]. Nature, 2016, 535(7613):551-555. DOI: 10.1038/nature18928.
|
[42] |
LIU K M, GUO L, ZHOU Z J,et al. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke[J]. Microvasc Res, 2019, 123:74-80. DOI: 10.1016/j.mvr.2019.01.001.
|
[43] |
DAVIS C H, KIM K Y, BUSHONG E A,et al. Transcellular degradation of axonal mitochondria[J]. Proc Natl Acad Sci USA, 2014, 111(26):9633-9638. DOI: 10.1073/pnas.1404651111.
|
[44] |
HAN S, JEONG Y Y, SHESHADRI P,et al. Mitophagy regulates integrity of mitochondria at synapses and is critical for synaptic maintenance[J]. EMBO Rep, 2020, 21(9):e49801. DOI: 10.15252/embr.201949801.
|
[45] |
ROBINSON J L, MOLINA-PORCEL L, CORRADA M M,et al. Perforant path synaptic loss correlates with cognitive impairment and Alzheimer's disease in the oldest-old[J]. Brain, 2014, 137(Pt 9):2578-2587. DOI: 10.1093/brain/awu190.
|
[46] |
KASHYAP G, BAPAT D, DAS D,et al. Synapse loss and progress of Alzheimer's disease-a network model[J]. Sci Rep, 2019, 9(1):6555. DOI: 10.1038/s41598-019-43076-y.
|
[47] |
LAMPINEN R, BELAYA I, SAVELEVA L,et al. Neuron-astrocyte transmitophagy is altered in Alzheimer's disease[J]. Neurobiol Dis, 2022, 170:105753. DOI: 10.1016/j.nbd.2022.105753.
|
[48] |
SHARMA M, RAMÍREZ JARQUÍN U N, RIVERA O,et al. Rhes,a striatal-enriched protein,promotes mitophagy via nix[J]. Proc Natl Acad Sci USA, 2019, 116(47):23760-23771. DOI: 10.1073/pnas.1912868116.
|
[49] |
LI Q, ZHANG T, WANG J X,et al. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke[J]. Biochem Biophys Res Commun, 2014, 444(2):182-188. DOI: 10.1016/j.bbrc.2014.01.032.
|
[50] |
YU S S, ZHENG S F, LENG J,et al. Inhibition of mitochondrial calcium uniporter protects neurocytes from ischemia/reperfusion injury via the inhibition of excessive mitophagy[J]. Neurosci Lett, 2016, 628:24-29. DOI: 10.1016/j.neulet.2016.06.012.
|
[51] |
SCHEIBLICH H, DANSOKHO C, MERCAN D,et al. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes[J]. Cell, 2021, 184(20):5089-5106.e21. DOI: 10.1016/j.cell.2021.09.007.
|
[52] |
HASAN-OLIVE M M, ENGER, HANSSON H A,et al. Pathological mitochondria in neurons and perivascular astrocytic endfeet of idiopathic normal pressure hydrocephalus patients[J]. Fluids Barriers CNS, 2019, 16(1):39. DOI: 10.1186/s12987-019-0160-7.
|
[53] |
MO Y, SUN Y Y, LIU K Y. Autophagy and inflammation in ischemic stroke[J]. Neural Regen Res, 2020, 15(8):1388-1396. DOI: 10.4103/1673-5374.274331.
|
[54] |
JAYARAJ R L, AZIMULLAH S, BEIRAM R,et al. Neuroinflammation:friend and foe for ischemic stroke[J]. J Neuroinflammation, 2019, 16(1):142. DOI: 10.1186/s12974-019-1516-2.
|
[55] |
YAN C Y, MA Z, MA H L,et al. Mitochondrial transplantation attenuates brain dysfunction in Sepsis by driving microglial M2 polarization[J]. Mol Neurobiol, 2020, 57(9):3875-3890. DOI: 10.1007/s12035-020-01994-3.
|
[56] |
|
[57] |
MAHROUF-YORGOV M, AUGEUL L, DA SILVA C C,et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties[J]. Cell Death Differ, 2017, 24(7):1224-1238. DOI: 10.1038/cdd.2017.51.
|
[58] |
GUO S Z, DENG W J, XING C H,et al. Effects of aging,hypertension and diabetes on the mouse brain and heart vasculomes[J]. Neurobiol Dis, 2019, 126:117-123. DOI: 10.1016/j.nbd.2018.07.021.
|
[59] |
WEBB R L, KAISER E E, SCOVILLE S L,et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model[J]. Transl Stroke Res, 2018, 9(5):530-539. DOI: 10.1007/s12975-017-0599-2.
|
[60] |
JUNG J E, SUN G, BAUTISTA GARRIDO J,et al. The mitochondria-derived peptide humanin improves recovery from intracerebral hemorrhage:implication of mitochondria transfer and microglia phenotype change[J]. J Neurosci, 2020, 40(10):2154-2165. DOI: 10.1523/jneurosci.2212-19.2020.
|
[61] |
JOSHI A U, MINHAS P S, LIDDELOW S A,et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration[J]. Nat Neurosci, 2019, 22(10):1635-1648. DOI: 10.1038/s41593-019-0486-0.
|
[62] |
HOSSEINI L, KARIMIPOUR M, SEYEDAGHAMIRI F,et al. Intranasal administration of mitochondria alleviated cognitive impairments and mitochondrial dysfunction in the photothrombotic model of mPFC stroke in mice[J]. J Stroke Cerebrovasc Dis, 2022, 31(12):106801. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106801.
|
[63] |
TASHIRO R, BAUTISTA-GARRIDO J, OZAKI D,et al. Transplantation of astrocytic mitochondria modulates neuronal antioxidant defense and neuroplasticity and promotes functional recovery after intracerebral hemorrhage[J]. J Neurosci, 2022, 42(36):7001-7014. DOI: 10.1523/jneurosci.2222-21.2022.
|
[64] |
ZHAO J, QU D, XI Z,et al. Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF[J]. Transl Res, 2021, 235:102-114. DOI: 10.1016/j.trsl.2021.03.017.
|
[65] |
ZHAN Z, MA Z, YAN C,et al. Muscle-derived autologous mitochondrial transplantation:a novel strategy for treating cerebral ischemic injury[J]. Behav Brain Res, 2019, 356:322-331. DOI: 10.1016/j.bbr.2018.09.005.
|
[66] |
ROBICSEK O, ENE H M, KARRY R,et al. Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder[J]. Schizophr Bull, 2018, 44(2):432-442. DOI: 10.1093/schbul/sbx077.
|
[67] |
HUANG P J, KUO C C, LEE H C,et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains[J]. Cell Transplant, 2016, 25(5):913-927. DOI: 10.3727/096368915X689785.
|
[68] |
ZHANG Z F, ZOU X X, ZHANG R,et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke[J]. Aging (Albany NY), 2021, 13(2):3060-3079. DOI: 10.18632/aging.202466.
|
[69] |
FENG B, MENG L, LUAN L M,et al. Upregulation of extracellular vesicles-encapsulated miR-132 released from mesenchymal stem cells attenuates ischemic neuronal injury by inhibiting Smad2/c-Jun pathway via Acvr2b suppression[J]. Front Cell Dev Biol, 2020, 8:568304. DOI: 10.3389/fcell.2020.568304.
|
[70] |
COURT A C, LE-GATT A, LUZ-CRAWFORD P,et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response[J]. EMBO Rep, 2020, 21(2):e48052. DOI: 10.15252/embr.201948052.
|
[71] |
MARINO B L B, DE SOUZA L R, SOUSA K P A,et al. Parkinson's disease:a review from pathophysiology to treatment[J]. Mini Rev Med Chem, 2020, 20(9):754-767. DOI: 10.2174/1389557519666191104110908.
|