[1] |
|
[2] |
HODSON R. Inflammatory bowel disease[J]. Nature, 2016, 540(7634):S97. DOI: 10.1038/540S97a.
|
[3] |
ZHANG Y Z, LI Y Y. Inflammatory bowel disease:pathogenesis[J]. World J Gastroenterol, 2014, 20(1):91-99. DOI: 10.3748/wjg.v20.i1.91.
|
[4] |
|
[5] |
ROUND J L, MAZMANIAN S K. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nat Rev Immunol, 2009, 9(5):313-323. DOI: 10.1038/nri2515.
|
[6] |
KIM D, JUNG J Y, OH H S, et al. Comparison of sampling methods in assessing the microbiome from patients with ulcerative colitis[J]. BMC Gastroenterol, 2021, 21(1):396. DOI: 10.1186/s12876-021-01975-3.
|
[7] |
LEHMANN T, SCHALLERT K, VILCHEZ-VARGAS R, et al. Metaproteomics of fecal samples of Crohn's disease and Ulcerative Colitis[J]. J Proteomics, 2019, 201:93-103. DOI: 10.1016/j.jprot.2019.04.009.
|
[8] |
FACCHIN S, VITULO N, CALGARO M, et al. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease[J]. Neurogastroenterol Motil, 2020, 32(10):e13914. DOI: 10.1111/nmo.13914.
|
[9] |
IMAI T, INOUE R, KAWADA Y, et al. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease[J]. J Gastroenterol, 2019, 54(2):149-159. DOI: 10.1007/s00535-018-1530-7.
|
[10] |
WEINGARDEN A R, VAUGHN B P. Intestinal microbiota,fecal microbiota transplantation,and inflammatory bowel disease[J]. Gut Microbes, 2017, 8(3):238-252. DOI: 10.1080/19490976.2017.1290757.
|
[11] |
DORON S, SNYDMAN D R, GORBACH S L. Lactobacillus GG:bacteriology and clinical applications[J]. Gastroenterol Clin North Am, 2005, 34(3):483-498,ix. DOI: 10.1016/j.gtc.2005.05.011.
|
[12] |
|
[13] |
SEGERS M E, LEBEER S. Towards a better understanding of Lactobacillus rhamnosus GG—host interactions[J]. Microb Cell Fact, 2014, 13(Suppl 1):S7. DOI: 10.1186/1475-2859-13-S1-S7.
|
[14] |
MENTELLA M C, SCALDAFERRI F, PIZZOFERRATO M, et al. Nutrition,IBD and gut microbiota:a review[J]. Nutrients, 2020, 12(4):E944. DOI: 10.3390/nu12040944.
|
[15] |
LANE E R, ZISMAN T L, SUSKIND D L. The microbiota in inflammatory bowel disease:current and therapeutic insights[J]. J Inflamm Res, 2017, 10:63-73. DOI: 10.2147/JIR.S116088.
|
[16] |
NI J, WU G D, ALBENBERG L, et al. Gut microbiota and IBD:causation or correlation? [J]. Nat Rev Gastroenterol Hepatol, 2017, 14(10):573-584. DOI: 10.1038/nrgastro.2017.88.
|
[17] |
TAKAHASHI K, NISHIDA A, FUJIMOTO T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn's disease[J]. Digestion, 2016, 93(1):59-65. DOI: 10.1159/000441768.
|
[18] |
MIRSEPASI-LAURIDSEN H C, VALLANCE B A, KROGFELT K A, et al. Escherichia coli pathobionts associated with inflammatory bowel disease[J]. Clin Microbiol Rev, 2019, 32(2):e00060-e00018. DOI: 10.1128/CMR.00060-18.
|
[19] |
YEO S, PARK H, SEO E, et al. Anti-inflammatory and gut microbiota modulatory effect of Lactobacillus rhamnosus strain LDTM 7511 in a dextran sulfate sodium-induced colitis murine model[J]. Microorganisms, 2020, 8(6):E845. DOI: 10.3390/microorganisms8060845.
|
[20] |
TONG L J, ZHANG X Y, HAO H N, et al. Lactobacillus rhamnosus GG derived extracellular vesicles modulate gut microbiota and attenuate inflammatory in DSS-induced colitis mice[J]. Nutrients, 2021, 13(10):3319. DOI: 10.3390/nu13103319.
|
[21] |
RALLABANDI H R, YANG H, OH K B, et al. Evaluation of intestinal epithelial barrier function in inflammatory bowel diseases using murine intestinal organoids[J]. Tissue Eng Regen Med, 2020, 17(5):641-650. DOI: 10.1007/s13770-020-00278-0.
|
[22] |
ODENWALD M A, TURNER J R. The intestinal epithelial barrier:a therapeutic target? [J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1):9-21. DOI: 10.1038/nrgastro.2016.169.
|
[23] |
YOO J H, DONOWITZ M. Intestinal enteroids/organoids:a novel platform for drug discovery in inflammatory bowel diseases[J]. World J Gastroenterol, 2019, 25(30):4125-4147. DOI: 10.3748/wjg.v25.i30.4125.
|
[24] |
LEBEER S, CLAES I, TYTGAT H L, et al. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells[J]. Appl Environ Microbiol, 2012, 78(1):185-193. DOI: 10.1128/AEM.06192-11.
|
[25] |
FATMAWATI N N D, GOTOH K, MAYURA I P B, et al. Enhancement of intestinal epithelial barrier function by Weissella confusa F213 and Lactobacillus rhamnosus FBB81 probiotic candidates in an in vitro model of hydrogen peroxide-induced inflammatory bowel disease[J]. BMC Res Notes, 2020, 13(1):489. DOI: 10.1186/s13104-020-05338-1.
|
[26] |
ORLANDO A, LINSALATA M, BIANCO G, et al. Lactobacillus rhamnosus GG protects the epithelial barrier of wistar rats from the pepsin-trypsin-digested gliadin(PTG)-induced enteropathy[J]. Nutrients, 2018, 10(11):E1698. DOI: 10.3390/nu10111698.
|
[27] |
HAN X, LEE A, HUANG S, et al. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids[J]. Gut Microbes, 2019, 10(1):59-76. DOI: 10.1080/19490976.2018.1479625.
|
[28] |
FIECHTER R H, DE JONG H M, VAN MENS L J J, et al. IL-12p40/IL-23p40 blockade with ustekinumab decreases the synovial inflammatory infiltrate through modulation of multiple signaling pathways including MAPK-ERK and wnt[J]. Front Immunol, 2021, 12:611656. DOI: 10.3389/fimmu.2021.611656.
|
[29] |
YAN F, CAO H W, COVER T L, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism[J]. J Clin Invest, 2011, 121(6):2242-2253. DOI: 10.1172/JCI44031.
|
[30] |
GUAN Q D. A comprehensive review and update on the pathogenesis of inflammatory bowel disease[J]. J Immunol Res, 2019, 2019:7247238. DOI: 10.1155/2019/7247238.
|
[31] |
GEREMIA A, BIANCHERI P, ALLAN P, et al. Innate and adaptive immunity in inflammatory bowel disease[J]. Autoimmun Rev, 2014, 13(1):3-10. DOI: 10.1016/j.autrev.2013.06.004.
|
[32] |
JIN Y B, CAO X, SHI C W, et al. Lactobacillus rhamnosus GG promotes early B lineage development and IgA production in the Lamina propria in piglets[J]. J Immunol, 2021, 207(8):2179-2191. DOI: 10.4049/jimmunol.2100102.
|
[33] |
YANG L Y, HIGGINBOTHAM J N, LIU L P, et al. Production of a functional factor,p40,by Lactobacillus rhamnosus GG is promoted by intestinal epithelial cell-secreted extracellular vesicles[J]. Infect Immun, 2019, 87(7):e113-119. DOI: 10.1128/IAI.00113-19.
|
[34] |
SHEN X, LIU L P, PEEK R M, et al. Supplementation of p40,a Lactobacillus rhamnosus GG-derived protein,in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes[J]. Mucosal Immunol, 2018, 11(5):1316-1328. DOI: 10.1038/s41385-018-0034-3.
|
[35] |
WANG Y, GONG L, WU Y P, et al. Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets[J]. J Zhejiang Univ Sci B, 2019, 20(2):180-192. DOI: 10.1631/jzus.B1800022.
|
[36] |
JIA L, WU R Q, HAN N N, et al. Porphyromonas gingivalis and Lactobacillus rhamnosus GG regulate the Th17/Treg balance in colitis via TLR4 and TLR2[J]. Clin Transl Immunology, 2020, 9(11):e1213. DOI: 10.1002/cti2.1213.
|
[37] |
LI Y B, YANG S J, LUN J X, et al. Inhibitory effects of the Lactobacillus rhamnosus GG effector protein HM0539 on inflammatory response through the TLR4/MyD88/NF-кB axis[J]. Front Immunol, 2020, 11:551449. DOI: 10.3389/fimmu.2020.551449.
|
[38] |
LIU T Y, SONG X L, AN Y P, et al. Lactobacillus rhamnosus GG colonization in early life ameliorates inflammaging of offspring by activating SIRT1/AMPK/PGC-1 α pathway[J]. Oxid Med Cell Longev, 2021, 2021:3328505. DOI: 10.1155/2021/3328505.
|
[39] |
LIU P, LI Y X, WANG R, et al. Oxidative stress and antioxidant nanotherapeutic approaches for inflammatory bowel disease[J]. Biomedicines, 2021, 10(1):85. DOI: 10.3390/biomedicines10010085.
|
[40] |
BHATTACHARYYA A, CHATTOPADHYAY R, MITRA S, et al. Oxidative stress:an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J]. Physiol Rev, 2014, 94(2):329-354. DOI: 10.1152/physrev.00040.2012.
|
[41] |
GOYAL N, RISHI P, SHUKLA G. Lactobacillus rhamnosus GG antagonizes Giardia intestinalis induced oxidative stress and intestinal disaccharidases:an experimental study[J]. World J Microbiol Biotechnol, 2013, 29(6):1049-1057. DOI: 10.1007/s11274-013-1268-6.
|
[42] |
CHIVERO E T, SIL S, SINGH S, et al. Protective role of Lactobacillus rhamnosus probiotic in reversing cocaine-induced oxidative stress,glial activation and locomotion in mice[J]. J Neuroimmune Pharmacol, 2021. DOI: 10.1007/s11481-021-10020-9.
|
[43] |
LI J Z, LI Q K, GAO N, et al. Exopolysaccharides produced by Lactobacillus rhamnosus GG alleviate hydrogen peroxide-induced intestinal oxidative damage and apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 pathways in vitro[J]. Food Funct, 2021, 12(20):9632-9641. DOI: 10.1039/d1fo00277e.
|
[44] |
EUGENICOS M P, FERREIRA N B. Psychological factors associated with inflammatory bowel disease[J]. Br Med Bull, 2021, 138(1):16-28. DOI: 10.1093/bmb/ldab010.
|
[45] |
BARBERIO B, ZAMANI M, BLACK C J, et al. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease:a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6(5):359-370. DOI: 10.1016/S2468-1253(21)00014-5.
|
[46] |
SWEENEY P, O'HARA K, XU Z, et al. HFD-induced energy states-dependent bidirectional control of anxiety levels in mice[J]. Int J Obes(Lond), 2017, 41(8):1237-1245. DOI: 10.1038/ijo.2017.112.
|
[47] |
FOROOZAN P, KOUSHKIE JAHROMI M, NEMATI J, et al. Probiotic supplementation and high-intensity interval training modify anxiety-like behaviors and corticosterone in high-fat diet-induced obesity mice[J]. Nutrients, 2021, 13(6):1762. DOI: 10.3390/nu13061762.
|
[48] |
ZHOU B Q, JIN G, PANG X Q, et al. Lactobacillus rhamnosus GG colonization in early life regulates gut-brain axis and relieves anxiety-like behavior in adulthood[J]. Pharmacol Res, 2022, 177:106090. DOI: 10.1016/j.phrs.2022.106090.
|
[49] |
MEINI S, LAUREANO R, FANI L, et al. Breakthrough Lactobacillus rhamnosus GG bacteremia associated with probiotic use in an adult patient with severe active ulcerative colitis:case report and review of the literature[J]. Infection, 2015, 43(6):777-781. DOI: 10.1007/s15010-015-0798-2.
|