[1] |
WAYPA G B, SMITH K A, SCHUMACKER P T. O 2 sensing,mitochondria and ROS signaling:the fog is lifting[J]. Mol Aspects Med, 2016, 47/48:76-89. DOI: 10.1016/j.mam.2016.01.002.
|
[2] |
CHAE K S, KANG M J, LEE J H,et al. Opposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditions[J]. Oncogene, 2011, 30(10):1213-1228. DOI: 10.1038/onc.2010.498.
|
[3] |
AHMAD A, AHMAD S, MALCOLM K C,et al. Differential regulation of pulmonary vascular cell growth by hypoxia-inducible transcription factor-1α and hypoxia-inducible transcription factor-2α[J]. Am J Respir Cell Mol Biol, 2013, 49(1):78-85. DOI: 10.1165/rcmb.2012-0107OC.
|
[4] |
WANG G L, JIANG B H, RUE E A,et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension[J]. Proc Natl Acad Sci USA, 1995, 92(12):5510-5514. DOI: 10.1073/pnas.92.12.5510.
|
[5] |
HOFFMAN E C, REYES H, CHU F F,et al. Cloning of a factor required for activity of the Ah(dioxin)receptor[J]. Science, 1991, 252(5008):954-958. DOI: 10.1126/science.1852076.
|
[6] |
XU X H, HUANG X W, QUN L,et al. Two functional loci in the promoter of EPAS1 gene involved in high-altitude adaptation of Tibetans[J]. Sci Rep, 2014, 4:7465. DOI: 10.1038/srep07465.
|
[7] |
JAIN S, MALTEPE E, LU M M,et al. Expression of ARNT,ARNT2,HIF1 alpha,HIF2 alpha and Ah receptor mRNAs in the developing mouse[J]. Mech Dev, 1998, 73(1):117-123. DOI: 10.1016/s0925-4773(98)00038-0.
|
[8] |
WIESENER M S, JÜRGENSEN J S, ROSENBERGER C,et al. Widespread hypoxia-inducible expression of HIF-2 alpha in distinct cell populations of different organs[J]. FASEB J, 2003, 17(2):271-273. DOI: 10.1096/fj.02-0445fje.
|
[9] |
SMYTHIES J A, SUN M, MASSON N,et al. Inherent DNA-binding specificities of the HIF-1α and HIF-2α transcription factors in chromatin[J]. EMBO Rep, 2019, 20(1):e46401. DOI: 10.15252/embr.201846401.
|
[10] |
COMPERNOLLE V, BRUSSELMANS K, ACKER T,et al. Loss of HIF-2 alpha and inhibition of VEGF impair fetal lung maturation,whereas treatment with VEGF prevents fatal respiratory distress in premature mice[J]. Nat Med, 2002, 8(7):702-710. DOI: 10.1038/nm721.
|
[11] |
TIAN H, HAMMER R E, MATSUMOTO A M,et al. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development[J]. Genes Dev, 1998, 12(21):3320-3324. DOI: 10.1101/gad.12.21.3320.
|
[12] |
SCORTEGAGNA M, DING K, OKTAY Y,et al. Multiple organ pathology,metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1 -/ - mice[J]. Nat Genet, 2003, 35(4):331-340. DOI: 10.1038/ng1266.
|
[13] |
PENG J, ZHANG L, DRYSDALE L,et al. The transcription factor EPAS-1/hypoxia-inducible factor 2 alpha plays an important role in vascular remodeling[J]. Proc Natl Acad Sci USA, 2000, 97(15):8386-8391. DOI: 10.1073/pnas.140087397.
|
[14] |
MASTROGIANNAKI M, MATAK P, KEITH B,et al. HIF-2 alpha,but not HIF-1 alpha,promotes iron absorption in mice[J]. J Clin Invest, 2009, 119(5):1159-1166. DOI: 10.1172/JCI38499.
|
[15] |
SHAH Y M, MATSUBARA T, ITO S,et al. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency[J]. Cell Metab, 2009, 9(2):152-164. DOI: 10.1016/j.cmet.2008.12.012.
|
[16] |
MORITA M, OHNEDA O, YAMASHITA T,et al. HLF/HIF-2 alpha is a key factor in retinopathy of prematurity in association with erythropoietin[J]. EMBO J, 2003, 22(5):1134-1146. DOI: 10.1093/emboj/cdg117.
|
[17] |
SCORTEGAGNA M, DING K, ZHANG Q,et al. HIF-2 alpha regulates murine hematopoietic development in an erythropoietin-dependent manner[J]. Blood, 2005, 105(8):3133-3140. DOI: 10.1182/blood-2004-05-1695.
|
[18] |
JÜRGENSEN J S, ROSENBERGER C, WIESENER M S,et al. Persistent induction of HIF-1 alpha and -2 alpha in cardiomyocytes and stromal cells of ischemic myocardium[J]. FASEB J, 2004, 18(12):1415-1417. DOI: 10.1096/fj.04-1605fje.
|
[19] |
ULLAH K, AI L Z, LI Y,et al. A novel ARNT-dependent HIF-2α signaling as a protective mechanism for cardiac microvascular barrier integrity and heart function post-myocardial infarction[J]. bioRxiv, 2024:2023.03.12.532316. DOI: 10.1101/2023.03.12.532316.
|
[20] |
SOHN E J, MOON H J, LIM J K,et al. Regulation of the protein stability and transcriptional activity of OCT4 in stem cells[J]. Adv Biol Regul, 2021, 79:100777. DOI: 10.1016/j.jbior.2020.100777.
|
[21] |
ZHANG S H, ZHAO L, WANG J H,et al. HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts[J]. Cell Death Dis, 2017, 8(1):e2548. DOI: 10.1038/cddis.2016.480.
|
[22] |
KAPITSINOU P P, SANO H, MICHAEL M,et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury[J]. J Clin Invest, 2014, 124(6):2396-2409. DOI: 10.1172/JCI69073.
|
[23] |
MASTROCOLA R, COLLINO M, PENNA C,et al. Maladaptive modulations of NLRP3 inflammasome and cardioprotective pathways are involved in diet-induced exacerbation of myocardial ischemia/reperfusion injury in mice[J]. Oxid Med Cell Longev, 2016, 2016:3480637. DOI: 10.1155/2016/3480637.
|
[24] |
GAO L G, CHEN Q, ZHOU X L,et al. The role of hypoxia-inducible factor 1 in atherosclerosis[J]. J Clin Pathol, 2012, 65(10):872-876. DOI: 10.1136/jclinpath-2012-200828.
|
[25] |
JAIN T, NIKOLOPOULOU E A, XU Q B,et al. Hypoxia inducible factor as a therapeutic target for atherosclerosis[J]. Pharmacol Ther, 2018, 183:22-33. DOI: 10.1016/j.pharmthera.2017.09.003.
|
[26] |
KNUTSON A K, WILLIAMS A L, BOISVERT W A,et al. HIF in the heart:development,metabolism,ischemia,and atherosclerosis[J]. J Clin Invest, 2021, 131(17):e137557. DOI: 10.1172/JCI137557.
|
[27] |
ZHANG X Z, ZHANG Y M, WANG P C,et al. Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism[J]. Cell Metab, 2019, 30(5):937-951.e5. DOI: 10.1016/j.cmet.2019.09.016.
|
[28] |
RABINOVITCH M. Molecular pathogenesis of pulmonary arterial hypertension[J]. J Clin Invest, 2012, 122(12):4306-4313. DOI: 10.1172/JCI60658.
|
[29] |
SATOH K, KIKUCHI N, SATOH T,et al. Identification of novel therapeutic targets for pulmonary arterial hypertension[J]. Int J Mol Sci, 2018, 19(12):4081. DOI: 10.3390/ijms19124081.
|
[30] |
THOMPSON A A R, LAWRIE A. Targeting vascular remodeling to treat pulmonary arterial hypertension[J]. Trends Mol Med, 2017, 23(1):31-45. DOI: 10.1016/j.molmed.2016.11.005.
|
[31] |
STENMARK K R, FRID M G, GRAHAM B B,et al. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension[J]. Cardiovasc Res, 2018, 114(4):551-564. DOI: 10.1093/cvr/cvy004.
|
[32] |
LABROUSSE-ARIAS D, CASTILLO-GONZÁLEZ R, ROGERS N M,et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction[J]. Cardiovasc Res, 2016, 109(1):115-130. DOI: 10.1093/cvr/cvv243.
|
[33] |
XU W L, KANEKO F T, ZHENG S,et al. Increased arginase Ⅱand decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension[J]. FASEB J, 2004, 18(14):1746-1748. DOI: 10.1096/fj.04-2317fje.
|
[34] |
GIRGIS R E, CHAMPION H C, DIETTE G B,et al. Decreased exhaled nitric oxide in pulmonary arterial hypertension:response to bosentan therapy[J]. Am J Respir Crit Care Med, 2005, 172(3):352-357. DOI: 10.1164/rccm.200412-1684OC.
|
[35] |
COWBURN A S, CROSBY A, MACIAS D,et al. HIF2α-arginase axis is essential for the development of pulmonary hypertension[J]. Proc Natl Acad Sci USA, 2016, 113(31):8801-8806. DOI: 10.1073/pnas.1602978113.
|
[36] |
MACIAS D, MOORE S, CROSBY A,et al. Targeting HIF2α-ARNT hetero-dimerisation as a novel therapeutic strategy for pulmonary arterial hypertension[J]. Eur Respir J, 2021, 57(3):1902061. DOI: 10.1183/13993003.02061-2019.
|
[37] |
BERTERO T, LU Y, ANNIS S,et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension[J]. J Clin Invest, 2022, 132(10):e161077. DOI: 10.1172/JCI161077.
|
[38] |
FIRTH A L, YAO W J, REMILLARD C V,et al. Upregulation of Oct-4 isoforms in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 298(4):L548-557. DOI: 10.1152/ajplung.00314.2009.
|
[39] |
FRUMP A L, SELEJ M, WOOD J A,et al. Hypoxia upregulates estrogen receptor β in pulmonary artery endothelial cells in a HIF-1α-dependent manner[J]. Am J Respir Cell Mol Biol, 2018, 59(1):114-126. DOI: 10.1165/rcmb.2017-0167OC.
|
[40] |
LIN Q, HUANG Y, BOOTH C J,et al. Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy[J]. J Am Heart Assoc, 2013, 2(6):e000548. DOI: 10.1161/JAHA.113.000548.
|
[41] |
SHRIDHAR P, GLENNON M S, PAL S,et al. MDM2 regulation of HIF signaling causes microvascular dysfunction in hypertrophic cardiomyopathy[J]. Circulation, 2023, 148(23):1870-1886. DOI: 10.1161/CIRCULATIONAHA.123.064332.
|
[42] |
|
[43] |
IACOBINI C, VITALE M, HAXHI J,et al. Mutual regulation between redox and hypoxia-inducible factors in cardiovascular and renal complications of diabetes[J]. Antioxidants, 2022, 11(11):2183. DOI: 10.3390/antiox11112183.
|
[44] |
PACKER M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney:modulation by SGLT2 inhibitors and hypoxia mimetics[J]. Am J Kidney Dis, 2021, 77(2):280-286. DOI: 10.1053/j.ajkd.2020.04.016.
|
[45] |
CIOFFI C L, LIU X Q, KOSINSKI P A,et al. Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells[J]. Biochem Biophys Res Commun, 2003, 303(3):947-953. DOI: 10.1016/s0006-291x(03)00453-4.
|
[46] |
APPELHOFF R J, TIAN Y M, RAVAL R R,et al. Differential function of the prolyl hydroxylases PHD1,PHD2,and PHD3 in the regulation of hypoxia-inducible factor[J]. J Biol Chem, 2004, 279(37):38458-38465. DOI: 10.1074/jbc.M406026200.
|
[47] |
APRELIKOVA O, CHANDRAMOULI G V R, WOOD M,et al. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors[J]. J Cell Biochem, 2004, 92(3):491-501. DOI: 10.1002/jcb.20067.
|
[48] |
MIIKKULAINEN P, HÖGEL H, SEYEDNASROLLAH F,et al. Hypoxia-inducible factor(HIF)-prolyl hydroxylase 3(PHD3)maintains high HIF2A mRNA levels in clear cell renal cell carcinoma[J]. J Biol Chem, 2019, 294(10):3760-3771. DOI: 10.1074/jbc.RA118.004902.
|
[49] |
FUKUI, SHINOZAKI Y, KOBAYASHI H,et al. JTZ-951(enarodustat),a hypoxia-inducibe factor prolyl hydroxylase inhibitor,stabilizes HIF-α protein and induces erythropoiesis without effects on the function of vascular endothelial growth factor[J]. Eur J Pharmacol, 2019, 859:172532. DOI: 10.1016/j.ejphar.2019.172532.
|
[50] |
YOON H, SHIN S H, SHIN D H,et al. Differential roles of Sirt1 in HIF-1α and HIF-2α mediated hypoxic responses[J]. Biochem Biophys Res Commun, 2014, 444(1):36-43. DOI: 10.1016/j.bbrc.2014.01.001.
|
[51] |
CHEN R, XU M, HOGG R T,et al. The acetylase/deacetylase couple CREB-binding protein/Sirtuin 1 controls hypoxia-inducible factor 2 signaling[J]. J Biol Chem, 2012, 287(36):30800-30811. DOI: 10.1074/jbc.M111.244780.
|
[52] |
PACKER M. Role of deranged energy deprivation signaling in the pathogenesis of cardiac and renal disease in states of perceived nutrient overabundance[J]. Circulation, 2020, 141(25):2095-2105. DOI: 10.1161/CIRCULATIONAHA.119.045561.
|
[53] |
PACKER M. Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development:implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors[J]. J Am Soc Nephrol, 2020, 31(5):907-919. DOI: 10.1681/ASN.2020010010.
|
[54] |
TANNO M, SAKAMOTO J, MIURA T,et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1[J]. J Biol Chem, 2007, 282(9):6823-6832. DOI: 10.1074/jbc.M609554200.
|
[55] |
LIM J H, LEE Y M, CHUN Y S,et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha[J]. Mol Cell, 2010, 38(6):864-878. DOI: 10.1016/j.molcel.2010.05.023.
|
[56] |
DIOUM E M, CHEN R, ALEXANDER M S,et al. Regulation of hypoxia-inducible factor 2 alpha signaling by the stress-responsive deacetylase sirtuin 1[J]. Science, 2009, 324(5932):1289-1293. DOI: 10.1126/science.1169956.
|
[57] |
LI P P, LIU Y, QIN X G,et al. SIRT1 attenuates renal fibrosis by repressing HIF-2α[J]. Cell Death Discov, 2021, 7(1):59. DOI: 10.1038/s41420-021-00443-x.
|
[58] |
KOH M Y, LEMOS R Jr, LIU X P,et al. The hypoxia-associated factor switches cells from HIF-1α- to HIF-2α-dependent signaling promoting stem cell characteristics,aggressive tumor growth and invasion[J]. Cancer Res, 2011, 71(11):4015-4027. DOI: 10.1158/0008-5472.CAN-10-4142.
|
[59] |
BENTO C F, FERNANDES R, RAMALHO J,et al. The chaperone-dependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal[J]. PLoS One, 2010, 5(11):e15062. DOI: 10.1371/journal.pone.0015062.
|
[60] |
REQUENA-IBÁÑEZ J A, SANTOS-GALLEGO C G, RODRIGUEZ-CORDERO A,et al. Prolyl hydroxylase inhibitors:a new opportunity in renal and myocardial protection[J]. Cardiovasc Drugs Ther, 2022, 36(6):1187-1196. DOI: 10.1007/s10557-021-07257-0.
|
[61] |
OSATAPHAN S, MACCHI C, SINGHAL G,et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and-independent mechanisms[J]. JCI Insight, 2019, 4(5):e123130. DOI: 10.1172/jci.insight.123130.
|
[62] |
SWE M T, THONGNAK L, JAIKUMKAO K,et al. Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress,but also induces hepatic gluconeogenic enzymes expression in obese rats[J]. Clin Sci, 2019, 133(23):2415-2430. DOI: 10.1042/CS20190863.
|
[63] |
PACKER M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry:a paradigm shift in understanding their mechanism of action[J]. Diabetes Care, 2020, 43(3):508-511. DOI: 10.2337/dci19-0074.
|
[64] |
LI J P, LIU H J, TAKAGI S,et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules[J]. JCI Insight, 2020, 5(6):e129034. DOI: 10.1172/jci.insight.129034.
|
[65] |
BESSHO R, TAKIYAMA Y, TAKIYAMA T,et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy[J]. Sci Rep, 2019, 9(1):14754. DOI: 10.1038/s41598-019-51343-1.
|
[66] |
MAZER C D, HARE G M T, CONNELLY P W,et al. Effect of empagliflozin on erythropoietin levels,iron stores,and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease[J]. Circulation, 2020, 141(8):704-707. DOI: 10.1161/CIRCULATIONAHA.119.044235.
|
[67] |
LI X L, LI J, WANG L L,et al. The role of metformin and resveratrol in the prevention of hypoxia-inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue[J]. Br J Pharmacol, 2016, 173(12):2001-2015. DOI: 10.1111/bph.13493.
|
[68] |
RYU D R, YU M R, KONG K H,et al. Sirt1-hypoxia-inducible factor-1α interaction is a key mediator of tubulointerstitial damage in the aged kidney[J]. Aging Cell, 2019, 18(2):e12904. DOI: 10.1111/acel.12904.
|
[69] |
SHAO Y, LV C, WU C,et al. MiR-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1α signaling pathway[J]. Diabetes Metab Res Rev, 2016, 32(6):534-543. DOI: 10.1002/dmrr.2788.
|
[70] |
PEKTAŞ M B, SADI G, KOCA H B,et al. Resveratrol ameliorates the components of hepatic inflammation and apoptosis in a rat model of streptozotocin-induced diabetes[J]. Drug Dev Res, 2016, 77(1):12-19. DOI: 10.1002/ddr.21287.
|