中国全科医学 ›› 2024, Vol. 27 ›› Issue (33): 4147-4154.DOI: 10.12114/j.issn.1007-9572.2024.0032

• 论著 • 上一篇    下一篇

早期主动脉硬化风险筛查模型的构建及验证研究

周镇森1,2, 黄岩2, 程思为3, 张小玉2, 张晓雨4, 孙婷1, 杨先军2, 谢晖1, 马祖长2,3,*()   

  1. 1.233030 安徽省蚌埠市,蚌埠医科大学护理学院
    2.230031 安徽省合肥市,中科院合肥物质科学研究院
    3.230026 安徽省合肥市,中国科学技术大学
    4.230022 安徽省合肥市,安徽医科大学第一附属医院健康管理中心
  • 收稿日期:2024-02-07 修回日期:2024-06-20 出版日期:2024-11-20 发布日期:2024-08-08
  • 通讯作者: 马祖长

  • 作者贡献:

    周镇森进行研究设计、数据分析、撰写论文;周镇森、黄岩、张晓雨负责数据收集;程思为负责数据校对和录入;张小玉、孙婷、杨先军、谢晖负责文章审校;马祖长负责最终版本修订,对论文整体负责。

  • 基金资助:
    国家重点研发计划(2022YFC2010200); 国家自然科学基金面上项目(62133004); 安徽省教育厅研究生教育质量工程项目(2022lhpysfjd063)

Construction and Validation of a Screening Model for Early Atherosclerosis Risk in the Aorta

ZHOU Zhensen1,2, HUANG Yan2, CHENG Siwei3, ZHANG Xiaoyu2, ZHANG Xiaoyu4, SUN Ting1, YANG Xianjun2, XIE Hui1, MA Zuchang2,3,*()   

  1. 1. Department of Nursing, Bengbu Medical University, Bengbu 233030, China
    2. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
    3. University of Science and Technology of China, Hefei 230026, China
    4. Health Management Center, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
  • Received:2024-02-07 Revised:2024-06-20 Published:2024-11-20 Online:2024-08-08
  • Contact: MA Zuchang

摘要: 背景 在心血管风险评估领域,主动脉僵硬度被认为是关键的预测指标,颈股脉搏波传导速度(cfPWV)被认为是无创评估主动脉硬化风险的金标准。由于技术难度等挑战,我国cfPWV检测尚未广泛开展。 目的 本研究旨在开发并验证一种基于心血管危险因素的早期主动脉硬化风险筛查模型,以期替代cfPWV复杂的测量过程,减少对传统测量方法的依赖。 方法 选取2023年5—11月在安徽医科大学第一附属医院体检中心招募的878名受试者作为研究对象,按照8∶2的比例进行随机抽样分为建模组(n=703)和验证组(n=175)。收集患者一般资料、实验室检查结果及cfPWV。依据cfPWV检查结果和相关指南,将建模组受试者分为无主动脉硬化风险(n=503)和有主动脉硬化风险(n=200)。采用多因素Logistic回归分析并筛选变量,建立列线图评估模型。绘制模型预测主动脉硬化发生风险的受试者工作特征曲线(ROC曲线),以ROC曲线下面积(AUC)、Hosmer-Lemeshow检验评估模型的区分度和校准度,采用Delong检验比较各模型的AUC,采用决策曲线分析(DCA)评估模型临床实用性,并采用Bootstrap法重复采样1 000次对模型进行内部验证。 结果 建模组有主动脉硬化风险者年龄、BMI、收缩压(SBP)、舒张压(DBP)、平均动脉压(MAP)、尿素、空腹血糖(FBG)、低密度脂蛋白胆固醇(LDL-C)、三酰甘油(TG)、总胆固醇(TC)、丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、血红蛋白(Hb)、饮酒、血脂异常、糖尿病比例高于无主动脉硬化风险者,肾小球滤过率(GFR)、血小板计数(PLT)低于无主动脉硬化风险者(P<0.05)。多因素Logistic回归分析结果显示年龄(OR=1.112,95%CI=1.082~1.143)、MAP(OR=1.146,95%CI=1.107~1.188)、Hb(OR=1.026,95%CI=1.004~1.049)和FBG(OR=1.353,95%CI=1.076~1.701)是主动脉硬化的独立影响因素(P<0.05)。纳入多因素Logistic回归分析结果差异有统计学意义的指标(年龄、MAP、Hb、FBG)构建预测模型Ⅰ,同时分别纳入吸烟、性别、血脂异常构建模型Ⅱ、模型Ⅲ、模型Ⅳ,绘制模型Ⅰ~模型Ⅳ的ROC曲线,模型Ⅰ~模型Ⅳ的AUC分别为0.941(95%CI=0.923~0.964,P<0.05)、0.941(95%CI=0.922~0.962,P<0.05)、0.941(95%CI=0.922~0.963,P<0.05)、0.939(95%CI=0.919~0.962,P<0.05);Delong检验结果示,模型Ⅰ、模型Ⅱ、模型Ⅲ、模型Ⅳ的AUC比较,差异无统计学意义(P>0.05)。根据多因素Logistic回归分析结果,以年龄、MAP、FBG、Hb为预测因子构建列线图模型,预测模型训练集的AUC为0.941(95%CI=0.920~0.962),灵敏度为0.832,特异度为0.917。验证集的AUC为0.961(95%CI=0.914~1.000),灵敏度为0.872,特异度为0.964。DCA结果显示使用主动脉硬化早期筛查模型可以使受试者在临床中获益。 结论 本研究基于年龄、MAP、Hb和FBG 4个简易指标,建立了早期主动脉硬化风险筛查模型,提供了便捷、高效的早期血管功能筛查的方法。

关键词: 动脉硬化, 主动脉僵硬度, 颈股脉搏波传导速度, 预测模型, 早期筛查

Abstract:

Background

In the field of cardiovascular risk assessment, aortic stiffness is considered a key predictive indicator, and carotid-femoral pulse wave velocity (cfPWV) is recognized as the gold standard for non-invasive assessment of atherosclerotic risk in the aorta. Due to challenges such as technical difficulty, cfPWV testing has not been widely implemented in China.

Objective

This study aimed to develop and validate a screening model for early atherosclerotic risk in the aorta based on cardiovascular risk factors, with the intention of replacing the complex measurement process of cfPWV and reducing reliance on traditional measurement methods.

Methods

A total of 878 participants recruited from the Health Checkup Center of the First Affiliated Hospital of Anhui Medical University between May and November 2023 were selected as research subjects, randomly divided into a model-building group (n=703) and a validation group (n=175) in an 8∶2 ratio. Patient general information, laboratory test results, and cfPWV were collected. Based on the cfPWV examination results and relevant guidelines, participants in the model-building group were divided into those without atherosclerotic risk in the aorta (n=503) and those with atherosclerotic risk in the aorta (n=200). Multifactorial Logistic regression analysis was used to screen variables and establish a nomogram assessment model. The receiver operating characteristic curve (ROC curve) for predicting the risk of atherosclerosis in the aorta was plotted for the model, and the model's discriminative ability and calibration were assessed using the area under the ROC curve (AUC) and the Hosmer-Lemeshow test, respectively. The Delong test was used to compare the AUCs of different models, and decision curve analysis (DCA) was used to assess the clinical utility of the model. Internal validation of the model was performed using the bootstrap method with 1 000 resampling iterations.

Results

Participants with atherosclerotic risk in the model-building group were older, had higher BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), urea, fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), total cholesterol (TC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), hemoglobin (Hb), and a higher proportion of alcohol consumption, dyslipidemia, and diabetes than those without atherosclerotic risk in the aorta. The glomerular filtration rate (GFR) and platelet count (PLT) were lower in those with atherosclerotic risk (P<0.05). Multifactorial Logistic regression analysis showed that age (OR=1.112, 95%CI=1.082-1.143), MAP (OR=1.146, 95%CI=1.107-1.188), Hb (OR=1.026, 95%CI=1.004-1.049), and FBG (OR=1.353, 95%CI=1.076-1.701) were independent risk factors for atherosclerosis in the aorta (P<0.05). A predictive modelⅠ was constructed using statistically significant indicators from the multifactorial logistic regression analysis (age, MAP, Hb, FBG), and models Ⅱ, Ⅲ, and Ⅳ were constructed by additionally including smoking, gender, and dyslipidemia, respectively. The AUCs for models Ⅰ to Ⅳ were 0.941 (95%CI=0.923-0.964, P<0.05), 0.941 (95%CI=0.922-0.962, P<0.05), 0.941 (95%CI=0.922-0.963, P<0.05), and 0.939 (95%CI=0.919-0.962, P<0.05), respectively. The Delong test showed no statistically significant difference in AUCs among models Ⅰ, Ⅱ, Ⅲ, and Ⅳ (P>0.05). A nomogram model was constructed using age, MAP, FBG, and Hb as predictive factors, with an AUC of 0.941 (95%CI=0.920-0.962) for the training set, sensitivity of 0.832, and specificity of 0.917. The AUC for the validation set was 0.961 (95%CI=0.914-1.000), with sensitivity of 0.872 and specificity of 0.964. DCA results indicated that the use of the early atherosclerosis screening model could benefit participants in clinical practice.

Conclusion

Based on four simple indexes of age, mean arterial pressure, hemoglobin and fasting blood glucose, a screening model for early aortic sclerosis risk was established, which provides a convenient and efficient method for early vascular function screening.

Key words: Arteriosclerosis, Aortic stiffness, Carotid-femoral pulse wave velocity, Prediction model, Early screening

中图分类号: