[1] |
ZHANG J S, XU P, LIU R C, et al. Osteoporosis and coronary heart disease:a bi-directional mendelian randomization study[J]. Front Endocrinol, 2024, 15:1362428. DOI: 10.3389/fendo.2024.1362428.
|
[2] |
HUANG Y Q, YE J Y. Association between hypertension and osteoporosis:a population-based cross-sectional study[J]. BMC Musculoskelet Disord, 2024, 25(1):434. DOI: 10.1186/s12891-024-07553-4.
|
[3] |
WU H L, YANG J, WEI Y C, et al. Analysis of the prevalence,risk factors,and clinical characteristics of osteoporosis in patients with essential hypertension[J]. BMC Endocr Disord, 2022, 22(1):165. DOI: 10.1186/s12902-022-01080-w.
|
[4] |
CHAI H, GE J R, LI L, et al. Hypertension is associated with osteoporosis:a case-control study in Chinese postmenopausal women[J]. BMC Musculoskelet Disord, 2021, 22(1):253. DOI: 10.1186/s12891-021-04124-9.
|
[5] |
LI C, ZENG Y, TAO L, et al. Meta-analysis of hypertension and osteoporotic fracture risk in women and men[J]. Osteoporos Int, 2017, 28(8):2309-2318. DOI: 10.1007/s00198-017-4050-z.
|
[6] |
HU Z Q, YANG K, HU Z H, et al. Determining the association between hypertension and bone metabolism markers in osteoporotic patients[J]. Medicine, 2021, 100(24):e26276. DOI: 10.1097/MD.0000000000026276.
|
[7] |
ASABA Y, ITO M, FUMOTO T, et al. Activation of renin-angiotensin system induces osteoporosis independently of hypertension[J]. J Bone Miner Res, 2009, 24(2):241-250. DOI: 10.1359/jbmr.081006.
|
[8] |
KIM K M, HWANG E J, LEE S J, et al. The impact of Renin-Angiotensin System Inhibitors on bone fracture risk:a nationwide nested case-control study[J]. BMC Musculoskelet Disord, 2024, 25(1):3. DOI: 10.1186/s12891-023-07102-5.
|
[9] |
ZHAO J J, YANG H, CHEN B, et al. The skeletal renin-angiotensin system:a potential therapeutic target for the treatment of osteoarticular diseases[J]. Int Immunopharmacol, 2019, 72:258-263. DOI: 10.1016/j.intimp.2019.04.023.
|
[10] |
PRAMUSITA A, KITAURA H, OHORI F, et al. Salt-sensitive hypertension induces osteoclastogenesis and bone resorption via upregulation of angiotensinⅡ typeⅠ receptor expression in osteoblasts[J]. Front Cell Dev Biol, 2022, 10:816764. DOI: 10.3389/fcell.2022.816764.
|
[11] |
TIYASATKULKOVIT W, PROMRUK W, ROJVIRIYA C, et al. Impairment of bone microstructure and upregulation of osteoclastogenic markers in spontaneously hypertensive rats[J]. Sci Rep, 2019, 9(1):12293. DOI: 10.1038/s41598-019-48797-8.
|
[12] |
WU T L, LIN Z B, WANG C Z, et al. Correlation between vitamin D levels and blood pressure in elderly hypertensive patients with osteoporosis[J]. Front Med, 2024, 11:1396254. DOI: 10.3389/fmed.2024.1396254.
|
[13] |
CHEN X, HE B B, ZHOU Y L, et al. Investigating the effect of history of fractures and hypertension on the risk of all-cause death from osteoporosis:a retrospective cohort study[J]. Medicine, 2023, 102(13):e33342. DOI: 10.1097/MD.0000000000033342.
|
[14] |
HIJAZI N, ALOURFI Z. Association between hypertension,antihypertensive drugs,and osteoporosis in postmenopausal Syrian women:a cross-sectional study[J]. Adv Med, 2020, 2020:7014212. DOI: 10.1155/2020/7014212.
|
[15] |
BONNET N, BENHAMOU C L, MALAVAL L, et al. Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions[J]. J Cell Physiol, 2008, 217(3):819-827. DOI: 10.1002/jcp.21564.
|
[16] |
ZHANG R X, YIN H T, YANG M D, et al. Advanced progress of the relationship between antihypertensive drugs and bone metabolism[J]. Hypertension, 2023, 80(11):2255-2264. DOI: 10.1161/HYPERTENSIONAHA.123.21648.
|
[17] |
SONG S W, CAI X T, HU J L, et al. Effectiveness of spironolactone in reducing osteoporosis and future fracture risk in middle-aged and elderly hypertensive patients[J]. Des Dev Ther, 2024, 18:2215-2225. DOI: 10.2147/DDDT.S466904.
|
[18] |
SYU D K, HSU S H, YEH P C, et al. The association between coronary artery disease and osteoporosis:a population-based longitudinal study in Taiwan[J]. Arch Osteoporos, 2022, 17(1):91. DOI: 10.1007/s11657-022-01128-3.
|
[19] |
GERBER Y, JOSEPH MELTON L 3rd, WESTON S A, et al. Association between myocardial infarction and fractures:an emerging phenomenon[J]. Circulation, 2011, 124(3):297-303. DOI: 10.1161/CIRCULATIONAHA.110.007195.
|
[20] |
|
[21] |
LIU N J, CHEN J, ZHANG K Q, et al. A community-based study of the relationship between coronary artery disease and osteoporosis in Chinese postmenopausal women[J]. Coron Artery Dis, 2016, 27(1):59-64. DOI: 10.1097/MCA.0000000000000306.
|
[22] |
WANG X, REN J, FANG F, et al. Matrix vesicles from osteoblasts promote atherosclerotic calcification[J]. Matrix Biol, 2024, 134:79-92. DOI: 10.1016/j.matbio.2024.09.003.
|
[23] |
KIEL D P, KAUPPILA L I, CUPPLES L A, et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period:the Framingham Heart Study[J]. Calcif Tissue Int, 2001, 68(5):271-276. DOI: 10.1007/BF02390833.
|
[24] |
ASADI M, RAZI F, FAHIMFAR N, et al. The association of coronary artery calcium score and osteoporosis in postmenopausal women:a cross-sectional study[J]. J Bone Metab, 2022, 29(4):245-254. DOI: 10.11005/jbm.2022.29.4.245.
|
[25] |
ZHANG Y Y, FENG B. Systematic review and meta-analysis for the association of bone mineral density and osteoporosis/osteopenia with vascular calcification in women[J]. Int J Rheum Dis, 2017, 20(2):154-160. DOI: 10.1111/1756-185X.12842.
|
[26] |
GU W, WANG Z Q, SUN Z, et al. Role of NFATc1 in the bone-vascular axis calcification paradox[J]. J Cardiovasc Pharmacol, 2020, 75(3):200-207. DOI: 10.1097/FJC.0000000000000788.
|
[27] |
WEI R, ZHANG Y X, HUANG M X, et al. Associations between bone mineral density and abdominal aortic calcification:Results of a nationwide survey[J]. Nutr Metab Cardiovasc Dis, 2024, 34(6):1488-1495. DOI: 10.1016/j.numecd.2024.01.031.
|
[28] |
VALERO C, GONZÁLEZ MACÍAS J. Atherosclerosis,vascular calcification and osteoporosis[J]. Med Clínica Engl Ed, 2025, 164(4):e13-e20. DOI: 10.1016/j.medcle.2025.02.001.
|
[29] |
HOFBAUER L C, BRUECK C C, SHANAHAN C M, et al. Vascular calcification and osteoporosis—from clinical observation towards molecular understanding[J]. Osteoporos Int, 2007, 18(3):251-259. DOI: 10.1007/s00198-006-0282-z.
|
[30] |
HALLORAN D, DURBANO H W, NOHE A. Bone morphogenetic protein-2 in development and bone homeostasis[J]. J Dev Biol, 2020, 8(3):19. DOI: 10.3390/jdb8030019.
|
[31] |
THOMPSON B, TOWLER D A. Arterial calcification and bone physiology:role of the bone-vascular axis[J]. Nat Rev Endocrinol, 2012, 8(9):529-543. DOI: 10.1038/nrendo.2012.36.
|
[32] |
KRISHNAN V, BRYANT H U, MACDOUGALD O A. Regulation of bone mass by Wnt signaling[J]. J Clin Invest, 2006, 116(5):1202-1209. DOI: 10.1172/JCI28551.
|
[33] |
CATALANO A, BELLONE F, MORABITO N, et al. Sclerostin and vascular pathophysiology[J]. Int J Mol Sci, 2020, 21(13):4779. DOI: 10.3390/ijms21134779.
|
[34] |
ANAGNOSTIS P, KARAGIANNIS A, KAKAFIKA A I, et al. Atherosclerosis and osteoporosis:age-dependent degenerative processes or related entities?[J]. Osteoporos Int, 2009, 20(2):197-207. DOI: 10.1007/s00198-008-0648-5.
|
[35] |
ANAGNOSTIS P, FLORENTIN M, LIVADAS S, et al. Bone health in patients with dyslipidemias:an underestimated aspect[J]. Int J Mol Sci, 2022, 23(3):1639. DOI: 10.3390/ijms23031639.
|
[36] |
ZHANG Y H, HE B, WANG H J, et al. Associations between bone mineral density and coronary artery disease:a meta-analysis of cross-sectional studies[J]. Arch Osteoporos, 2020, 15(1):24. DOI: 10.1007/s11657-020-0691-1.
|
[37] |
|
[38] |
LI G H, CHEUNG C L, AU P C, et al. Positive effects of low LDL-C and statins on bone mineral density:an integrated epidemiological observation analysis and Mendelian randomization study[J]. Int J Epidemiol, 2020, 49(4):1221-1235. DOI: 10.1093/ije/dyz145.
|
[39] |
HONG W, WEI Z Y, QIU Z H, et al. Atorvastatin promotes bone formation in aged apoE-/- mice through the Sirt1-Runx2 axis[J]. J Orthop Surg Res, 2020, 15(1):303. DOI: 10.1186/s13018-020-01841-0.
|
[40] |
ZHU J X, ZHANG C G, JIA J L, et al. Osteogenic effects in a rat osteoporosis model and femur defect model by simvastatin microcrystals[J]. Ann N Y Acad Sci, 2021, 1487(1):31-42. DOI: 10.1111/nyas.14513.
|
[41] |
XIONG M X, XUE Y J, ZHU W, et al. Comparative efficacy and safety of statins for osteoporosis:a study protocol for a systematic review and network meta-analysis[J]. BMJ Open, 2022, 12(5):e054158. DOI: 10.1136/bmjopen-2021-054158.
|
[42] |
ASADIPOOYA K, WEINSTOCK A. Cardiovascular outcomes of romosozumab and protective role of alendronate[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7):1343-1350. DOI: 10.1161/atvbaha.119.312371.
|
[43] |
LIM S Y, BOLSTER M B. Clinical utility of romosozumab in the management of osteoporosis:focus on patient selection and perspectives[J]. Int J Womens Health, 2022, 14:1733-1747. DOI: 10.2147/IJWH.S315184.
|
[44] |
SAAG K G, PETERSEN J, BRANDI M L, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis[J]. N Engl J Med, 2017, 377(15):1417-1427. DOI: 10.1056/NEJMoa1708322.
|
[45] |
COSMAN F, CRITTENDEN D B, ADACHI J D, et al. Romosozumab treatment in postmenopausal women with osteoporosis[J]. N Engl J Med, 2016, 375(16):1532-1543. DOI: 10.1056/NEJMoa1607948.
|
[46] |
CUMMINGS S R, MCCULLOCH C. Explanations for the difference in rates of cardiovascular events in a trial of alendronate and romosozumab[J]. Osteoporos Int, 2020, 31(6):1019-1021. DOI: 10.1007/s00198-020-05379-z.
|
[47] |
WONG R M Y, WONG P Y, LIU C R, et al. Treatment effects,adverse outcomes and cardiovascular safety of romosozumab-Existing worldwide data:a systematic review and meta-analysis[J]. J Orthop Translat, 2024, 48:107-122. DOI: 10.1016/j.jot.2024.07.011.
|
[48] |
TOMINAGA R, et al. Comparative cardiovascular safety of romosozumab versus bisphosphonates in Japanese patients with osteoporosis:a new-user,active comparator design with instrumental variable analyses[J]. J Bone Miner Res, 2025:zjaf010. DOI: 10.1093/jbmr/zjaf010.
|
[49] |
KHALID S, CALDERON-LARRANAGA S, SAMI A, et al. Comparative risk of acute myocardial infarction for anti-osteoporosis drugs in primary care:a meta-analysis of propensity-matched cohort findings from the UK Clinical Practice Research Database and the Catalan SIDIAP Database[J]. Osteoporos Int, 2022, 33(7):1579-1589. DOI: 10.1007/s00198-021-06262-1.
|
[50] |
SPANGLER L, NIELSON C M, BROOKHART M A, et al. Cardiovascular safety in postmenopausal women and men with osteoporosis treated with denosumab and zoledronic acid:a post-authorization safety study[J]. JBMR Plus, 2023, 7(10):e10793. DOI: 10.1002/jbm4.10793.
|
[51] |
|
[52] |
BOLLAND M J, AVENELL A, BARON J A, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events:meta-analysis[J]. BMJ, 2010, 341:c3691. DOI: 10.1136/bmj.c3691.
|
[53] |
MICHAËLSSON K, MELHUS H, WARENSJÖ LEMMING E, et al. Long term calcium intake and rates of all cause and cardiovascular mortality:community based prospective longitudinal cohort study[J]. BMJ, 2013, 346:f228. DOI: 10.1136/bmj.f228.
|
[54] |
LEWIS J R, RADAVELLI-BAGATINI S, REJNMARK L, et al. The effects of calcium supplementation on verified coronary heart disease hospitalization and death in postmenopausal women:a collaborative meta-analysis of randomized controlled trials[J]. J Bone Miner Res, 2015, 30(1):165-175. DOI: 10.1002/jbmr.2311.
|
[55] |
CHUNG M, TANG A M, FU Z X, et al. Calcium intake and cardiovascular disease risk:an updated systematic review and meta-analysis[J]. Ann Intern Med, 2016, 165(12):856-866. DOI: 10.7326/M16-1165.
|
[56] |
NAGHSHI S, NAEMI M, SADEGHI O, et al. Total,dietary,and supplemental calcium intake and risk of all-cause cardiovascular,and cancer mortality:a systematic review and dose-response meta-analysis of prospective cohort studies[J]. Crit Rev Food Sci Nutr, 2022, 62(21):5733-5743. DOI: 10.1080/10408398.2021.1890690.
|
[57] |
LEE J K, TRAN T M C, CHOI E, et al. Association between daily dietary calcium intake and the risk of cardiovascular disease(CVD)in postmenopausal Korean women[J]. Nutrients, 2024, 16(7):1043. DOI: 10.3390/nu16071043.
|
[58] |
|
[59] |
AASETH J O, FINNES T E, ASKIM M, et al. The importance of vitamin K and the combination of vitamins K and D for calcium metabolism and bone health:a review[J]. Nutrients, 2024, 16(15):2420. DOI: 10.3390/nu16152420.
|
[60] |
KATANO S, YANO T, TSUKADA T, et al. Clinical risk factors and prognostic impact of osteoporosis in patients with chronic heart failure[J]. Circ J, 2020, 84(12):2224-2234. DOI: 10.1253/circj.cj-20-0593.
|
[61] |
VERHEYEN N, SCHMID J, KOLESNIK E, et al. Prevalence and prognostic impact of bone disease in chronic heart failure with reduced ejection fraction[J]. ESC Heart Fail, 2024, 11(3):1730-1738. DOI: 10.1002/ehf2.14741.
|
[62] |
LONCAR G, CVETINOVIC N, LAINSCAK M, et al. Bone in heart failure[J]. J Cachexia Sarcopenia Muscle, 2020, 11(2):381-393. DOI: 10.1002/jcsm.12516.
|
[63] |
ARNETT T R, GIBBONS D C, UTTING J C, et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption[J]. J Cell Physiol, 2003, 196(1):2-8. DOI: 10.1002/jcp.10321.
|
[64] |
ABE H, SEMBA H, TAKEDA N. The roles of hypoxia signaling in the pathogenesis of cardiovascular diseases[J]. J Atheroscler Thromb, 2017, 24(9):884-894. DOI: 10.5551/jat.RV17009.
|
[65] |
GE G, LI J, WANG Q. Heart failure and fracture risk:a meta-analysis[J]. Osteoporos Int, 2019, 30(10):1903-1909. DOI: 10.1007/s00198-019-05042-2.
|
[66] |
GUAN Z Y, YUAN W Q, JIA J L, et al. Bone mass loss in chronic heart failure is associated with sympathetic nerve activation[J]. Bone, 2023, 166:116596. DOI: 10.1016/j.bone.2022.116596.
|
[67] |
XING W M, LV X L, GAO W Y, et al. Bone mineral density in patients with chronic heart failure:a meta-analysis[J]. Clin Interv Aging, 2018, 13:343-353. DOI: 10.2147/CIA.S154356.
|
[68] |
LONCAR G, GARFIAS-VEITL T, VALENTOVA M, et al. Bone status in men with heart failure:results from the Studies Investigating co-morbidities Aggravating Heart Failure[J]. Eur J Heart Fail, 2023, 25(5):714-723. DOI: 10.1002/ejhf.2794.
|
[69] |
BANDEIRA F, OLIVEIRA L B, CALDEIRA R B, et al. Skeletal consequences of heart failure[J]. Womens Health, 2022, 18:17455057221135501. DOI: 10.1177/17455057221135501.
|
[70] |
DE OLIVEIRA L B, DE FIGUEIREDO MARTINS SIQUEIRA M A, DE MACEDO GADÊLHA R B, et al. Bone mineral density,trabecular bone score and fractures in patients hospitalized for heart failure[J]. J Bone Metab, 2023, 30(2):167-177. DOI: 10.11005/jbm.2023.30.2.167.
|
[71] |
NUMAZAWA R, KATANO S, YANO T, et al. Development and validation of osteoporosis risk assessment score in patients with heart failure:comparison with the osteoporosis self-assessment tool for Asians[J]. Eur J Cardiovasc Nurs, 2024, 23(4):408-417. DOI: 10.1093/eurjcn/zvad089.
|
[72] |
LIU X P, JIAN X Y, LIANG D L, et al. The association between heart failure and risk of fractures:Pool analysis comprising 260,410 participants[J]. Front Cardiovasc Med, 2022, 9:977082. DOI: 10.3389/fcvm.2022.977082.
|
[73] |
HEO J H, RASCATI K L, LOPEZ K N, et al. Increased fracture risk with furosemide use in children with congenital heart disease[J]. J Pediatr, 2018, 199:92-98.e10. DOI: 10.1016/j.jpeds.2018.03.077.
|
[74] |
MARTENS P, TER MAATEN J M, VANHAEN D, et al. Heart failure is associated with accelerated age related metabolic bone disease[J]. Acta Cardiol, 2021, 76(7):718-726. DOI: 10.1080/00015385.2020.1771885.
|
[75] |
CARBONE L D, CROSS J D, RAZA S H, et al. Fracture risk in men with congestive heart failure risk reduction with spironolactone[J]. J Am Coll Cardiol, 2008, 52(2):135-138. DOI: 10.1016/j.jacc.2008.03.039.
|
[76] |
|
[77] |
WIKAREK A, GRABARCZYK M, KLIMEK K, et al. Effect of drugs used in pharmacotherapy of type 2 diabetes on bone density and risk of bone fractures[J]. Medicina, 2024, 60(3):393. DOI: 10.3390/medicina60030393.
|
[78] |
WU C, KATO T S, PRONSCHINSKE K, et al. Dynamics of bone turnover markers in patients with heart failure and following haemodynamic improvement through ventricular assist device implantation[J]. Eur J Heart Fail, 2012, 14(12):1356-1365. DOI: 10.1093/eurjhf/hfs138.
|
[79] |
LIU S H, TAN Y M, HUANG W D, et al. Cardiovascular safety of zoledronic acid in the treatment of primary osteoporosis:a meta-analysis and systematic review[J]. Semin Arthritis Rheum, 2024, 64:152304. DOI: 10.1016/j.semarthrit.2023.152304.
|
[80] |
WITTE K K, BYROM R, GIERULA J, et al. Effects of vitamin D on cardiac function in patients with chronic HF:the VINDICATE study[J]. J Am Coll Cardiol, 2016, 67(22):2593-2603. DOI: 10.1016/j.jacc.2016.03.508.
|
[81] |
COSMAN F, PETERSON L R, TOWLER D A, et al. Cardiovascular safety of abaloparatide in postmenopausal women with osteoporosis:analysis from the ACTIVE phase 3 trial[J]. J Clin Endocrinol Metab, 2020, 105(11):3384-3395. DOI: 10.1210/clinem/dgaa450.
|
[82] |
ALNAQBI K A, AL ZEYOUDI J, ALJABERI A K. Cardiac arrhythmia and heart failure shortly after starting romosozumab for osteoporosis:a case-based review[J]. Cureus, 2023, 15(12):e50303. DOI: 10.7759/cureus.50303.
|
[83] |
SHERER J A, HUANG Q X, KIEL D P, et al. Atrial fibrillation and the risk of subsequent fracture[J]. Am J Med, 2020, 133(8):954-960. DOI: 10.1016/j.amjmed.2020.02.012.
|
[84] |
WONG C X, GAN S W, LEE S W, et al. Atrial fibrillation and risk of hip fracture:a population-based analysis of 113,600 individuals[J]. Int J Cardiol, 2017, 243:229-232. DOI: 10.1016/j.ijcard.2017.05.012.
|
[85] |
LAI H C, CHIEN W C, CHUNG C H, et al. Atrial fibrillation,CHA2DS2-VASc score,antithrombotics and risk of non-traffic-,non-cancer-related bone fractures:a population-based cohort study[J]. Eur J Intern Med, 2015, 26(10):798-806. DOI: 10.1016/j.ejim.2015.10.002.
|
[86] |
KIM D, YANG P S, KIM T H, et al. Effect of atrial fibrillation on the incidence and outcome of osteoporotic fracture - A nationwide population-based study[J]. Circ J, 2018, 82(8):1999-2006. DOI: 10.1253/circj.cj-17-1179.
|
[87] |
WALLACE E R, SISCOVICK D S, SITLANI C M, et al. Incident atrial fibrillation and the risk of fracture in the cardiovascular health study[J]. Osteoporos Int, 2017, 28(2):719-725. DOI: 10.1007/s00198-016-3778-1.
|
[88] |
|
[89] |
易懿. 成骨细胞MR在房颤和心房纤维化中的机制研究[D]. 上海:上海交通大学,2018.
|
[90] |
MARQUES J V O, NALEVAIKO J Z, OLIVEIRA M F, et al. Trabecular bone score(TBS)and bone mineral density in patients with long-term therapy with warfarin[J]. Arch Osteoporos, 2020, 15(1):102. DOI: 10.1007/s11657-020-00770-z.
|
[91] |
SUGIYAMA T, KUGIMIYA F, KONO S, et al. Warfarin use and fracture risk:an evidence-based mechanistic insight[J]. Osteoporos Int, 2015, 26(3):1231-1232. DOI: 10.1007/s00198-014-2912-1.
|
[92] |
XIE X P, LIU Y M, LI J B, et al. Fracture risks in patients with atrial fibrillation treated with different oral anticoagulants:a meta-analysis and systematic review[J]. Age Ageing, 2022, 51(1):afab264. DOI: 10.1093/ageing/afab264.
|
[93] |
HUANG H K, PENG C C, LIN S M, et al. Fracture risks in patients treated with different oral anticoagulants:a systematic review and meta-analysis[J]. J Am Heart Assoc, 2021, 10(7):e019618. DOI: 10.1161/JAHA.120.019618.
|
[94] |
LIU Y M, XIE X P, BI S Q, et al. Risk of osteoporosis in patients treated with direct oral anticoagulants vs. warfarin:an analysis of observational studies[J]. Front Endocrinol, 2023, 14:1212570. DOI: 10.3389/fendo.2023.1212570.
|
[95] |
YANG H Y, HUANG J H, CHIU H W, et al. Vitamin D and bisphosphonates therapies for osteoporosis are associated with different risks of atrial fibrillation in women:a nationwide population-based analysis[J]. Medicine, 2018, 97(43):e12947. DOI: 10.1097/MD.0000000000012947.
|
[96] |
PARK J H, KO H J. The association between treatment with bisphosphonates and the risk of atrial fibrillation:a meta-analysis of observational studies[J]. Korean J Fam Med, 2022, 43(1):69-76. DOI: 10.4082/kjfm.21.0110.
|
[97] |
|
[98] |
TASTET L, SHEN M, CAPOULADE R, et al. Bone mineral density and progression rate of calcific aortic valve stenosis[J]. J Am Coll Cardiol, 2020, 75(14):1725-1726. DOI: 10.1016/j.jacc.2020.01.053.
|
[99] |
HEKIMIAN G, BOUTTEN A, FLAMANT M, et al. Progression of aortic valve stenosis is associated with bone remodelling and secondary hyperparathyroidism in elderly patients—the COFRASA study[J]. Eur Heart J, 2013, 34(25):1915-1922. DOI: 10.1093/eurheartj/ehs450.
|
[100] |
AMBALAVANAN J, HUBBARD C, KHAN L Z. Acceleration of preexisting aortic stenosis after teriparatide initiation[J]. AACE Clin Case Rep, 2024, 10(4):152-155. DOI: 10.1016/j.aace.2024.04.006.
|
[101] |
ALISHIRI G, HESHMAT-GHAHDARIJANI K, HASHEMI M, et al. Alendronate slows down aortic stenosis progression in osteoporotic patients:an observational prospective study[J]. J Res Med Sci, 2020, 25:65. DOI: 10.4103/jrms.jrms_408_20.
|
[102] |
TSURUDA T, FUNAMOTO T, SUZUKI C, et al. Increasing baseline aortic valve peak flow velocity is associated with progression of aortic valve stenosis in osteoporosis patients-a possible link to low vitamin D status[J]. Arch Osteoporos, 2023, 18(1):129. DOI: 10.1007/s11657-023-01339-2.
|