[1] |
|
[2] |
MARTINEZ L, CORDS O, LIU Q, et al. Infant BCG vaccination and risk of pulmonary and extrapulmonary tuberculosis throughout the life course:a systematic review and individual participant data meta-analysis[J]. Lancet Glob Health, 2022, 10(9):e1307-1316. DOI: 10.1016/S2214-109X(22)00283-2.
|
[3] |
|
[4] |
BIE S Y, HU X J, ZHANG H G, et al. Influential factors and spatial-temporal distribution of tuberculosis in mainland China[J]. Sci Rep, 2021, 11(1):6274. DOI: 10.1038/s41598-021-85781-7.
|
[5] |
FENG Q S, ZHANG G L, CHEN L, et al. Roadmap for ending TB in China by 2035:the challenges and strategies[J]. Biosci Trends, 2024, 18(1):11-20. DOI: 10.5582/bst.2023.01325.
|
[6] |
RUE H, MARTINO S, CHOPIN N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations[J]. J R Stat Soc Ser B Stat Methodol, 2009, 71(2):319-392. DOI: 10.1111/j.1467-9868.2008.00700.x.
|
[7] |
LINDGREN F, RUE H, LINDSTRÖM J. An explicit link between Gaussian fields and Gaussian Markov random fields:the stochastic partial differential equation approach[J]. J R Stat Soc Ser B Stat Methodol, 2011, 73(4):423-498. DOI: 10.1111/j.1467-9868.2011.00777.x.
|
[8] |
GODANA A A, MWALILI S M, ORWA G O. Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state,Ethiopia[J]. PLoS One, 2019, 14(3):e0212934. DOI: 10.1371/journal.pone.0212934.
|
[9] |
MORAGA P, DEAN C, INOUE J, et al. Bayesian spatial modelling of geostatistical data using INLA and SPDE methods:a case study predicting malaria risk in Mozambique[J]. Spat Spatiotemporal Epidemiol, 2021, 39:100440. DOI: 10.1016/j.sste.2021.100440.
|
[10] |
|
[11] |
|
[12] |
陈静娜. 基于INLA-SPDE方法的河南省PM2.5浓度估算研究[D]. 开封:河南大学,2023.
|
[13] |
|
[14] |
TAYLOR B M, DIGGLE P J. INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes[J]. J Stat Comput Simul, 2014, 84(10):2266-2284. DOI: 10.1080/00949655.2013.788653.
|
[15] |
WU F, CAI J H, WEN C H, et al. Co-sparse non-negative matrix factorization[J]. Front Neurosci, 2022, 15:804554. DOI: 10.3389/fnins.2021.804554.
|
[16] |
HILDEMAN A, BOLIN D, RYCHLIK I. Deformed SPDE models with an application to spatial modeling of significant wave height[J]. Spatial Stat, 2021, 42:100449. DOI: 10.1016/j.spasta.2020.100449.
|
[17] |
FLAGG K, HOEGH A. The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models[J]. J Appl Stat, 2022, 50(5):1128-1151. DOI: 10.1080/02664763.2021.2023116.
|
[18] |
CAMELETTI M, LINDGREN F, SIMPSON D, et al. Spatio-temporal modeling of particulate matter concentration through the SPDE approach[J]. Asta Adv Stat Anal, 2013, 97(2):109-131. DOI: 10.1007/s10182-012-0196-3.
|
[19] |
VAN NIEKERK J, KRAINSKI E, RUSTAND D, et al. A new avenue for Bayesian inference with INLA[J]. Comput Stat Data Anal, 2023, 181:107692. DOI: 10.1016/j.csda.2023.107692.
|
[20] |
BLANGIARDO M, CAMELETTI M, BAIO G, et al. Spatial and spatio-temporal models with R-INLA[J]. Spatial Spatio Temporal Epidemiol, 2013, 7:39-55. DOI: 10.1016/j.sste.2013.07.003.
|
[21] |
|
[22] |
|
[23] |
POOJAR B, SHENOY K A, NAIK P R, et al. Spatiotemporal analysis of drug-resistant TB patients registered in selected districts of Karnataka,South India:a cross-sectional study[J]. Trop Med Health, 2020, 48:15. DOI: 10.1186/s41182-020-00199-7.
|