中国全科医学

• •

我国不同地区老年人共病患病影响因素的Meta分析:南北方对比研究

尹佳佳1,姚丽2*,周梓涵1,李钦钦1,王庭瑞1,刘焱1   

  1. 1. 550025贵州省贵阳市,贵州医科大学护理学院 2. 550004贵州省贵阳市,贵州医科大学附属医院呼吸与危重症医学科
  • 收稿日期:2025-02-13 修回日期:2025-03-22 接受日期:2025-04-02
  • 通讯作者: 姚丽
  • 基金资助:
    贵州医科大学附属医院临床科研项目(gyfyhlxz-2023-2)

Meta-Analysis of Factors Influencing the Prevalence of Multimorbidity Among the Elderly in Different Regions of China: A Comparative Study Between the North and the South

YIN Jiajia1, YAO li2*, ZHOU Zihan1, LI Qinqin1, WANG Tingrui1, LIU yan1   

  • Received:2025-02-13 Revised:2025-03-22 Accepted:2025-04-02
  • Contact: YAO Li
分享到

摘要: 背景 老年群体中多重慢性疾病共病现象已成为当前公共卫生领域亟待关注的重要问题,因此深入探究老年群体共病相关影响因素具有重要意义。目的 了解我国不同地区老年群体共病患病率及其患病影响因素,以期更好管理和干预不同地区老年群体的共病发展和预后。方法 利用计算机检索PubMed、Embase、Web of Science、Cochrane Library、Scopus、中国生物医学文献服务系统、中国知网、万方数据知识服务平台中有关老年人共病患病影响因素的队列研究、病例对照研究、横断面研究等观察性研究,检索时限为建库至2024年7月。2名研究者独立检索、筛选文献、数据提取并交叉核对,出现分歧时请第三方进行仲裁决定。用Stata 18.0软件进行Meta分析。结果 纳入来自南北方的文献各有10篇,样本量分别为2 342 507例和75 871例。南北方老年患者共病率分别为34% [95%CI(29%, 38%),P<0.001] 和36% [95%CI(22%, 50%),P<0.001]。其中,南方老年共病患者的影响因素有年龄[OR=1.92, 95%CI(1.26,2.94),P=0.003]、性别[OR=1.51,95%CI(1.03,2.21),P=0.034]、家庭人均月收入[OR=1.62, 95%CI(1.03,2.54),P=0.036]、文化程度[OR=1.47,95%CI(1.25,1.73),P<0.001]、体重指数[OR=1.72,95%CI(1.52,1.96), P<0.001]、是否吸烟[OR=1.53,95%CI(1.11,2.11),P=0.009]、是否饮酒[OR=1.39,95%CI(1.26,1.54),P<0.001]、是否经常进行体育锻炼[OR=0.67,95%CI(0.55,0.80),P<0.001];北方老年共病患者的影响因素有年龄[OR=1.67, 95%CI(1.00,2.79),P=0.048]、体重指数[OR=2.12,95%CI(1.23,3.65),P=0.007]、是否饮酒[OR=1.63, 95%CI(1.32,2.02),P<0.001]、是否经常进行体育锻炼[OR=0.84,95%CI(0.71,0.99),P<0.037]。敏感性分析结果表明Meta分析结果较稳定,Egger's检验(老年人共病患病率P=0.826 、老年人共病影响因素P=0.841)提示纳入文献的发表偏倚风险不显著。结论 南北方老年人共病率较高。年龄、体重指数、是否饮酒、是否经常进行体育锻炼是南北方老年人相同的共病影响因素;性别、家庭人均月收入、文化程度、是否吸烟仅为南方老年人的共病影响因素。这种差异可能与饮食结构、经济发展水平、生活节奏及医疗资源分配不均等因素密切相关。建议加强区域间医疗资源的协调与共享,以促进健康公平性和医疗资源的均衡分配,从而提升老年人的整体健康水平。同时,医务或社区工作者应根据老年共病患者的影响因素,定制个性化干预方案,精准优化多重慢性病患者的疾病管理效果。

关键词: 共病, 共病影响因素, 老龄化, 南北差异;Meta分析

Abstract: Background The comorbidity of multiple chronic diseases in the elderly has become an important issue that needs urgent attention in the field of public health. Therefore, it is of great significance to explore the influencing factors of multiple chronic diseases in the elderly. Objective To investigate the prevalence of multiple chronic diseases and related influencing factors in the elderly population in northern and southern China, in order to better manage and intervene the development and prognosis of multiple chronic diseases in the elderly in different regions. Methods PubMed, Embase, Web of Science, Cochrane Library, Scopus, China Biology Medicine Disc, China National Knowledge Infrastructure, Wanfang Data Knowledge service platform were searched for relevant studies on influencing factors of multiple chronic diseases in the elderly. Two researchers independently searched, screened, extracted data, and cross-checked, with a third party arbitrating disagreements. The search time limit was from the establishment of the database to July 2024. Stata 18.0 software was used for meta-analysis. Results The research incorporated 10 articles from the southern region and 10 from the northern region, with sample sizes of 2 342 507 and 75 871 cases, respectively. The prevalence of chronic comorbidities among elderly patients in the southern and northern regions was 34% [95% CI (29%, 38%),P < 0.001] and 36% [95% CI (22%, 50%),P < 0.001], respectively. Among them, the influencing factors of elderly patients with comorbidities in southern China were age [OR=1.92,95%CI(1.26,2.94),P=0.003], gender [OR=1.51,95%CI(1.03,2.21),P=0.034], and family monthly income per capita [OR=1.62,95%CI(1.03,2.54),P=0.036], education level [OR=1.47,95%CI(1.25,1.73),P<0.001], body mass index [OR=1.72,95%CI(1.52,1.96),P<0.001], smoking [OR=1.53,95%CI(1.11,2.11),P=0.009], drinking [OR=1.39,95%CI(1.26,1.54), P<0.001], regular physical [OR=0.67,95%CI(0.55,0.80),P<0.001]; Age [OR=1.67,95%CI(1.00,2.79),P=0.048], body mass index [OR=2.12,95%CI(1.23,3.65),P=0.007], drinking [OR=1.63,95%CI(1.32,2.02),P<0.001], regular physical exercise [OR=0.84,95%CI(0.71,0.99),P<0.037] were the influencing factors of elderly patients with multimorbidity in northern China. Sensitivity analysis showed that the results of Meta-analysis were stable, and Egger's test (comorbidity prevalence: P=0.826; influencing factors: P=0.841) suggested that the risk of publication bias of the included literature was not significant. Conclusions The prevalence of multimorbidity among the elderly is relatively high in both the northern and southern regions, influenced by age, body mass index, alcohol consumption, and physical activity in both areas. However, gender, monthly household income per capita, educational level, and smoking status are factors that specifically influence multimorbidity only among the elderly in the southern region. These disparities may stem from dietary habits, economic levels, lifestyle pace, and uneven medical resource distribution. Enhancing inter-regional medical resource coordination and sharing is advised to improve health equity and resource balance, boosting elderly health overall. Additionally, healthcare providers should tailor interventions based on these factors to optimize disease management in elderly with multimorbidity.

Key words: Multimorbidity, Influencing factors of multimorbidity, Aging, North-south differences;Meta-analysis