Page 73 - 2022-23-中国全科医学
P. 73

·2886· http://www.chinagp.net   E-mail:zgqkyx@chinagp.net.cn


           sampling,including 760 from neurology department treated during January to September 2021(model group,140 with AKI,
           and 620 without),and 310 treated during October to December 2021(validation group,53 with AKI and 257 without).
           Multivariate Logistic regression was used to identify factors associated with post-stroke AKI,then these factors were used to
           develop a risk prediction model. The Hosmer-Lemeshow test and receiver operating characteristic analysis were performed to
           assess the accuracy of fit and prediction value of the model,respectively. Then the model was verified in validation group,and
           based on the validation results,a simple post-stroke AKI risk assessment scale was developed. Results The prevalence of post-
           stroke AKI in the model group was 18.42%(P<0.05). Multivariate Logistic regression analysis showed that sex,history of
           hypertension,NIHSS score,history of use of loop diuretics,history of mechanical thrombectomy,serum levels of β 2 -MG,
           urea nitrogen,and sCysC were independently associated with post-stroke AKI(P<0.05). The post-stroke AKI risk prediction
                                 -a
           model constructed is y=1/(1+e ),in which a=-4.047+1.222× male + 1.386 × hypertension history + 1.716 × NIHSS score
           + 1.098 ×history of use of loop diuretics + 0.830 × mechanical thrombectomy history + 1.739 × β 2 -MG+1.202 × urea nitrogen
                                            2
           + 2.160 × sCysC. The fit of the model was χ =6.523,P=0.367. The AUC of the model for predicting post-stroke AKI in model
           group was 0.916 〔95%CI(0.891,0.940)〕,with 0.857 sensitivity,0.832 specificity,and 0.689 Youden index when the
           optimal cut-off value was chosen as 12.8%. And the AUC of the model in predicting post-stroke AKI in the verification group was
           0.906 〔95%CI(0.853,0.960)〕. The coefficients(β) derived from multivariate Logistic regression were rounded to the
           nearest integral value and weighted,then used to compile a simple scale with a total points of 11,whose AUC in predicting post-
           stroke AKI risk was 0.900〔95%CI(0.843,0.957),P<0.001〕when the optimal cut-off value was determined as 4,and
           the accuracy rate of which in practical applications was 88.39%. Conclusion Our risk prediction model could effectively predict
           the risk of post-stroke AKI with high sensitivity and specificity,and the risk assessment scale compiled based on the model
           is a simple,feasible,objective,and quantitative tool for identifying high-risk patients,and the assessment result may be a
           reference for doctors and nurses to take interventions to early prevent AKI in stroke patients.
               【Key words】 Stroke;Acute kidney injury;Risk prediction model;Assessment instrument;Screening;
           Forecasting;Root cause analysis



               脑卒中患者常因脑肾关联的直接作用和潜在的医源                         (1)入院前存在 AKI;(2)未遵医嘱治疗或自动离院;(3)
           性肾毒性作用而出现急性肾损伤(AKI)                [1] ,发生率为        合并恶性肿瘤、严重心肺功能不全。AKI 诊断标准参照
           10.28%~35.30% [2-3] ,其中重症患者可达 51.90%       [4] 。    2012 年改善全球肾脏病预后(KDIGO)指南              [12] ,符合
           研究证实,AKI 一旦发生会明显增加患者的致残率和病                          以下三项之一即可诊断为 AKI:(1)48 h 内血肌酐升
           死率  [3,5-7] 。研究表明,AKI 是一个可预防、可治疗的                   高绝对值≥ 26.5 μmol/L(0.3 mg/dl);(2)确认或推
           临床综合征,对其进行实时预警监测,并及时给予包括                            测 7 d 之内血肌酐升高超过基础值的 1.5 倍及以上;(3)
                                                                             -1
                                                                                  -1
           关注液体平衡、优化血流动力学、慎用肾毒性药物等集                            尿量 <0.5 ml·kg ·h 超过 6 h。由于不能获取完整的
           束化的防治策略,可明显改善患者预后                  [8-10] 。因此,      尿量数据,本研究仅采用血肌酐标准。
           尽早进行风险评估,实现 AKI 早期预警管理是预防脑                              本研究模型构建预计纳入 24 个自变量,建模组样
           卒中患者疾病恶化及改善不良结局的关键。目前国内对                            本量定为自变量的 5~10 倍         [13] ,小样本预调查中本院
           脑卒中患者 AKI 筛查的研究较少,缺乏特异性的 AKI                        脑卒中患者 AKI 发生率为 18.00%,考虑 10%~20% 的
           筛查工具。本研究旨在建立脑卒中后发生 AKI 风险预                          样本流失,根据样本量计算公式:N=a×10×(1+0.1)
           测模型并编制简易风险评分量表,同时进行临床验证,                            /b,a 为自变量数目,b 为疾病发生率,因此,建模所
           为早期快速、准确识别高危患者提供有效工具,实现对                            需最少样本量为:24×10×(1+0.1)÷0.18=733。本研
           发生 AKI 风险概率不同的脑卒中患者进行有针对性、                          究建模组最终纳入符合标准的患者 760 例,根据是否发
           强度不同的治疗和护理。                                         生 AKI 将其分为 AKI 亚组和非 AKI 亚组。
           1 对象与方法                                                 采用便利抽样法选取 2021 年 10—12 月在本院治疗
           1.1 研究对象 采用便利抽样法选取 2021 年 1—9 月                     的脑卒中患者 310 例作为模型外部验证组,研究对象
           在浙江大学医学院附属第二医院神经内科住院治疗且病                            选取标准及 AKI 诊断标准同上,其中 AKI 者 53 例、非
           历资料完整的脑卒中患者为建模组。纳入标准:(1)                            AKI 者 257 例。
           年龄≥ 18 岁;(2)符合全国第四届脑血管病学术会议                             本研究通过浙江大学医学院附属第二医院人体研究
           制定的诊断标准      [11] ,并经颅脑CT和/或磁共振成像检查,                伦理委员会批准,批件号:(2021)伦审研第(1000)号。
           和 / 或医生电子病历显示确诊的脑卒中患者。排除标准:                         1.2 研究方法
   68   69   70   71   72   73   74   75   76   77   78