Chinese General Practice ›› 2024, Vol. 27 ›› Issue (08): 961-970.DOI: 10.12114/j.issn.1007-9572.2023.0360
Special Issue: 内分泌代谢性疾病最新文章合辑; 泌尿系统疾病最新文章合辑
• Original Research • Previous Articles Next Articles
Received:
2023-06-20
Revised:
2023-09-05
Published:
2024-03-15
Online:
2023-12-19
Contact:
CHEN Changsheng
通讯作者:
陈长生
作者简介:
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2023.0360
编号 | 变量名 | 赋值情况及值范围 |
---|---|---|
1 | 肾病 | 否=0(对照),是=1 |
2 | 性别 | 女=0(对照),男=1 |
3 | 年龄(岁) | <40=1(对照),40~<60=2,≥60=3 |
4 | BMI(kg/m2) | <18.5=1(对照),18.5~<24.0=2,24.0~<28.0=3,≥28.0=4 |
5 | 糖尿病持续时间(年) | <10=0(对照),≥10=1 |
6 | FBG(mg/dL) | 实测值:80~510 |
7 | HbA1c(mg/dL) | 实测值:6.5~13.3 |
8 | LDL(mg/dL) | 实测值:36~267 |
9 | HDL(mg/dL) | 实测值:20~62 |
10 | TG(mg/dL) | 实测值:74~756 |
11 | 治疗类型 | 口服剂=1(对照),胰岛素=2,二者=3 |
12 | 他汀类药物类型 | 无他汀类药物=1(对照),阿托伐他汀=2,瑞舒伐他汀=3 |
13 | SBP(mmHg) | 实测值:105~180 |
14 | DBP(mmHg) | 实测值:60~120 |
Table 1 The description of variable assignment
编号 | 变量名 | 赋值情况及值范围 |
---|---|---|
1 | 肾病 | 否=0(对照),是=1 |
2 | 性别 | 女=0(对照),男=1 |
3 | 年龄(岁) | <40=1(对照),40~<60=2,≥60=3 |
4 | BMI(kg/m2) | <18.5=1(对照),18.5~<24.0=2,24.0~<28.0=3,≥28.0=4 |
5 | 糖尿病持续时间(年) | <10=0(对照),≥10=1 |
6 | FBG(mg/dL) | 实测值:80~510 |
7 | HbA1c(mg/dL) | 实测值:6.5~13.3 |
8 | LDL(mg/dL) | 实测值:36~267 |
9 | HDL(mg/dL) | 实测值:20~62 |
10 | TG(mg/dL) | 实测值:74~756 |
11 | 治疗类型 | 口服剂=1(对照),胰岛素=2,二者=3 |
12 | 他汀类药物类型 | 无他汀类药物=1(对照),阿托伐他汀=2,瑞舒伐他汀=3 |
13 | SBP(mmHg) | 实测值:105~180 |
14 | DBP(mmHg) | 实测值:60~120 |
变量 | 无DN (n=51) | 患DN (n=73) | 检验统计量值 | P值 |
---|---|---|---|---|
性别[例(%)] | 1.759a | 0.185 | ||
女 | 34(66.7) | 40(54.8) | ||
男 | 17(33.3) | 33(45.2) | ||
年龄[例(%)] | 19.229a | <0.001 | ||
<40岁 | 5(9.8) | 4(5.5) | ||
40~<60岁 | 37(72.5) | 28(38.4) | ||
≥60岁 | 9(17.7) | 41(56.1) | ||
BMI[例(%)] | 13.100a | 0.002 | ||
<18.5 kg/m2 | 2(3.9) | 0 | ||
18.5 ~<24.0 kg/m2 | 10(19.6) | 2(2.7) | ||
24.0~<28.0 kg/m2 | 9(17.6) | 12(16.4) | ||
≥28.0 kg/m2 | 30(58.9) | 59(80.9) | ||
糖尿病持续时间[例(%)] | 27.358a | <0.001 | ||
<10年 | 39(76.5) | 21(28.8) | ||
≥10年 | 12(23.5) | 52(71.2) | ||
FBG( | 181.33±65.97 | 229.03±54.84 | -4.381b | <0.001 |
HbA1c[M(QR),%] | 8.10(1.60) | 10.80(0.95) | -5.773c | <0.001 |
LDL( | 109.12±35.17 | 152.68±42.67 | -6.003b | <0.001 |
HDL( | 38.55±8.43 | 35.74±5.84 | 2.193b | 0.030 |
TG( | 181.96±84.95 | 242.04±102.79 | -3.433b | 0.001 |
治疗类型[例(%)] | 4.281a | 0.113 | ||
口服剂 | 35(68.6) | 38(52.1) | ||
胰岛素 | 4(7.8) | 14(19.2) | ||
二者 | 12(23.6) | 21(28.7) | ||
他汀类药物类型[例(%)] | 0.814a | 0.778 | ||
无他汀类药物 | 16(31.3) | 19(26.0) | ||
阿托伐他汀 | 34(66.7) | 53(72.6) | ||
瑞舒伐他汀 | 1(2.0) | 1(1.4) | ||
SBP( | 130±15 | 155±14 | -9.524b | <0.001 |
DBP( | 81±9 | 98±12 | -8.499b | <0.001 |
Table 2 Univariate analysis of risk factors associated with type 2 diabetic nephropathy
变量 | 无DN (n=51) | 患DN (n=73) | 检验统计量值 | P值 |
---|---|---|---|---|
性别[例(%)] | 1.759a | 0.185 | ||
女 | 34(66.7) | 40(54.8) | ||
男 | 17(33.3) | 33(45.2) | ||
年龄[例(%)] | 19.229a | <0.001 | ||
<40岁 | 5(9.8) | 4(5.5) | ||
40~<60岁 | 37(72.5) | 28(38.4) | ||
≥60岁 | 9(17.7) | 41(56.1) | ||
BMI[例(%)] | 13.100a | 0.002 | ||
<18.5 kg/m2 | 2(3.9) | 0 | ||
18.5 ~<24.0 kg/m2 | 10(19.6) | 2(2.7) | ||
24.0~<28.0 kg/m2 | 9(17.6) | 12(16.4) | ||
≥28.0 kg/m2 | 30(58.9) | 59(80.9) | ||
糖尿病持续时间[例(%)] | 27.358a | <0.001 | ||
<10年 | 39(76.5) | 21(28.8) | ||
≥10年 | 12(23.5) | 52(71.2) | ||
FBG( | 181.33±65.97 | 229.03±54.84 | -4.381b | <0.001 |
HbA1c[M(QR),%] | 8.10(1.60) | 10.80(0.95) | -5.773c | <0.001 |
LDL( | 109.12±35.17 | 152.68±42.67 | -6.003b | <0.001 |
HDL( | 38.55±8.43 | 35.74±5.84 | 2.193b | 0.030 |
TG( | 181.96±84.95 | 242.04±102.79 | -3.433b | 0.001 |
治疗类型[例(%)] | 4.281a | 0.113 | ||
口服剂 | 35(68.6) | 38(52.1) | ||
胰岛素 | 4(7.8) | 14(19.2) | ||
二者 | 12(23.6) | 21(28.7) | ||
他汀类药物类型[例(%)] | 0.814a | 0.778 | ||
无他汀类药物 | 16(31.3) | 19(26.0) | ||
阿托伐他汀 | 34(66.7) | 53(72.6) | ||
瑞舒伐他汀 | 1(2.0) | 1(1.4) | ||
SBP( | 130±15 | 155±14 | -9.524b | <0.001 |
DBP( | 81±9 | 98±12 | -8.499b | <0.001 |
模型类型 | 准确率(%) | 精确率(%) | 灵敏度(%) | 特异度(%) | F1-score | AUC | ||
---|---|---|---|---|---|---|---|---|
训练集∶测试集=8∶2 | LR | 训练集 | 89.00 | 90.00 | 91.53 | 85.37 | 0.907 6 | 0.884 5 |
测试集 | 83.33 | 91.67 | 78.57 | 90.00 | 0.846 2 | 0.842 9 | ||
KNN | 训练集 | 91.00 | 94.64 | 89.83 | 92.68 | 0.921 7 | 0.912 6 | |
测试集 | 79.17 | 90.91 | 71.43 | 90.00 | 0.800 0 | 0.807 1 | ||
SVM | 训练集 | 91.00 | 94.64 | 89.83 | 92.68 | 0.921 7 | 0.912 6 | |
测试集 | 79.17 | 90.91 | 71.43 | 90.00 | 0.800 0 | 0.807 1 | ||
BP神经网络 | 训练集 | 86.00 | 84.85 | 93.33 | 75.00 | 0.888 9 | 0.841 7 | |
测试集 | 87.50 | 85.71 | 92.31 | 81.82 | 0.888 9 | 0.870 6 | ||
SSA-BP神经网络 | 训练集 | 92.00 | 94.83 | 91.67 | 92.50 | 0.932 2 | 0.920 8 | |
测试集 | 95.83 | 100.00 | 92.31 | 100.00 | 0.960 0 | 0.961 5 | ||
训练集∶测试集=7∶3 | LR | 训练集 | 87.50 | 90.20 | 88.46 | 86.11 | 0.893 2 | 0.873 0 |
测试集 | 86.11 | 94.44 | 80.95 | 93.33 | 0.871 8 | 0.871 0 | ||
KNN | 训练集 | 94.32 | 97.96 | 92.31 | 97.22 | 0.950 5 | 0.948 0 | |
测试集 | 86.11 | 94.44 | 80.95 | 93.33 | 0.871 8 | 0.871 0 | ||
SVM | 训练集 | 89.77 | 97.78 | 84.62 | 97.22 | 0.907 2 | 0.909 0 | |
测试集 | 86.11 | 100.00 | 76.19 | 100.00 | 0.864 9 | 0.881 0 | ||
BP神经网络 | 训练集 | 85.23 | 92.00 | 83.64 | 87.88 | 0.8762 1 | 0.857 6 | |
测试集 | 72.22 | 75.00 | 66.67 | 77.78 | 0.705 9 | 0.722 2 | ||
SSA-BP神经网络 | 训练集 | 94.32 | 94.64 | 96.36 | 90.91 | 0.955 0 | 0.936 4 | |
测试集 | 91.67 | 100.00 | 83.33 | 100.00 | 0.909 1 | 0.916 7 |
Table 3 Accuracy,precision,sensitivity,specificity,F1-score and AUC of machine learning models in predicting DN under varied sample splitting ratios
模型类型 | 准确率(%) | 精确率(%) | 灵敏度(%) | 特异度(%) | F1-score | AUC | ||
---|---|---|---|---|---|---|---|---|
训练集∶测试集=8∶2 | LR | 训练集 | 89.00 | 90.00 | 91.53 | 85.37 | 0.907 6 | 0.884 5 |
测试集 | 83.33 | 91.67 | 78.57 | 90.00 | 0.846 2 | 0.842 9 | ||
KNN | 训练集 | 91.00 | 94.64 | 89.83 | 92.68 | 0.921 7 | 0.912 6 | |
测试集 | 79.17 | 90.91 | 71.43 | 90.00 | 0.800 0 | 0.807 1 | ||
SVM | 训练集 | 91.00 | 94.64 | 89.83 | 92.68 | 0.921 7 | 0.912 6 | |
测试集 | 79.17 | 90.91 | 71.43 | 90.00 | 0.800 0 | 0.807 1 | ||
BP神经网络 | 训练集 | 86.00 | 84.85 | 93.33 | 75.00 | 0.888 9 | 0.841 7 | |
测试集 | 87.50 | 85.71 | 92.31 | 81.82 | 0.888 9 | 0.870 6 | ||
SSA-BP神经网络 | 训练集 | 92.00 | 94.83 | 91.67 | 92.50 | 0.932 2 | 0.920 8 | |
测试集 | 95.83 | 100.00 | 92.31 | 100.00 | 0.960 0 | 0.961 5 | ||
训练集∶测试集=7∶3 | LR | 训练集 | 87.50 | 90.20 | 88.46 | 86.11 | 0.893 2 | 0.873 0 |
测试集 | 86.11 | 94.44 | 80.95 | 93.33 | 0.871 8 | 0.871 0 | ||
KNN | 训练集 | 94.32 | 97.96 | 92.31 | 97.22 | 0.950 5 | 0.948 0 | |
测试集 | 86.11 | 94.44 | 80.95 | 93.33 | 0.871 8 | 0.871 0 | ||
SVM | 训练集 | 89.77 | 97.78 | 84.62 | 97.22 | 0.907 2 | 0.909 0 | |
测试集 | 86.11 | 100.00 | 76.19 | 100.00 | 0.864 9 | 0.881 0 | ||
BP神经网络 | 训练集 | 85.23 | 92.00 | 83.64 | 87.88 | 0.8762 1 | 0.857 6 | |
测试集 | 72.22 | 75.00 | 66.67 | 77.78 | 0.705 9 | 0.722 2 | ||
SSA-BP神经网络 | 训练集 | 94.32 | 94.64 | 96.36 | 90.91 | 0.955 0 | 0.936 4 | |
测试集 | 91.67 | 100.00 | 83.33 | 100.00 | 0.909 1 | 0.916 7 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
黄富程,刘德新,曹杰,等. 基于ABC优化BP神经网络的船舶交通流量预测[J]. 中国航海,2021,44(2):78-83.
|
[6] |
李卫华,徐涛,李小梨. 基于人工蜂群的BP神经网络算法[J]. 计算机系统应用,2012,21(5):195-197,183.
|
[7] |
|
[8] | |
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
李阳,陈晓泓,王一梅,等. 基于LASSO变量选择联合贝叶斯网络构建恶性肿瘤相关急性肾损伤(AKI)风险预测模型[J]. 复旦学报:医学版,2020,47(4):521-530. DOI:10.3969/j.issn.1672-8467.2020.04.009.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
许条建,金延儒,蒋梅荣,等. 基于麻雀搜索算法优化BP神经网络的深远海养殖平台系缆力预报研究[J]. 渔业现代化,2022,49(6):17-26. DOI:10.3969/j.issn.1007-9580.2022.06.003.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
高珍秀. 基于深度学习技术的2型糖尿病肾病风险预测模型的构建[D]. 南京:南京中医药大学,2021.
|
[30] |
TODAY Study Group,
|
[31] |
TODAY Study Group. Effects of metabolic factors,race-ethnicity,and sex on the development of nephropathy in adolescents and young adults with type 2 diabetes:results from the TODAY study[J]. Diabetes Care,2021,45(5):1056-1064. DOI:10.2337/dc21-1085.
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
何洋. 糖尿病肾病进展的危险因素及预测方程的建立[D]. 兰州:兰州大学,2021.
|
[39] |
|
[40] |
|
[41] |
|
[42] |
马倩倩,孙东旭,石金铭,等. 基于支持向量机与XGboost的成年人群肿瘤患病风险预测研究[J]. 中国全科医学,2020,23(12):1486-1491. DOI:10.12114/j.issn.1007-9572.2020.00.066.
|
[43] |
|
[44] |
于大海,李金,罗艳虹,等. 随机森林模型和决策树模型在肝硬化上消化道出血预后中的应用[J]. 中国卫生统计,2019,36(2):162-166.
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
汪可可,武建辉,周莹,等. 基于BP神经网络的急性脑梗死患者自发性出血性转化的风险预测研究[J]. 中国全科医学,2018,21(12):1413-1418. DOI:10.3969/j.issn.1007-9572.2017.00.189.
|
[50] |
田娟,朱姝婧,陆强,等. 基于BP神经网络预测儿童甲状腺疾病的模型研究[J]. 中国医学物理学杂志,2020,37(10):1340-1344. DOI:10.3969/j.issn.1005-202X.2020.10.022.
|
[51] |
黄仕鑫,浦科学,桑祎莹,等. 基于GA-BP神经网络模型鉴别2型糖尿病性周围神经病变的分类模型研究[J]. 解放军医学杂志,2020,45(1):73-78. DOI:10.11855/j.issn.0577-7402.2020.01.08.
|
[52] | |
[53] |
韦哲,石栋栋,王能才,等. 基于思维进化算法优化的BP神经网络对糖尿病并发症的预测研究[J]. 中国医学装备,2020,17(10):1-4. DOI:10.3969/J.ISSN.1672-8270.2020.10.001.
|
[54] |
|
[55] |
|
[1] | JIA Gaopeng, CHEN Qiuyu. Construction and Validation of a Risk Prediction Model for Recurrent Angina after Percutaneous Coronary Intervention in Elderly Patients with Acute ST-segment Elevation Myocardial Infarction: Based on CYP2C19-related Genetic Testing [J]. Chinese General Practice, 2025, 28(30): 3779-3786. |
[2] | LI Ling, LI Yaping, QIAN Shixing, NIE Jing, LU Chunhua, LI Xia. Research on Influencing Factors and Risk Prediction of Cognitive Function in Community-dwelling Middle-aged and Elderly People [J]. Chinese General Practice, 2025, 28(30): 3773-3778. |
[3] | ZHANG Ruimin, DONG Zheyi, LI Shuang, WANG Qian, CHEN Xiangmei. Traditional Chinese Medicine Factors Associated with Diabetic Nephropathy Diagnosed by Renal Biopsy [J]. Chinese General Practice, 2025, 28(26): 3307-3313. |
[4] | LIU Yinyin, SUI Hongping, LI Tingting, JIANG Tongtong, SHI Tieying, XIA Yunlong. Advances in Risk Prediction Models for Cardiotoxicity Associated with Breast Cancer Treatment [J]. Chinese General Practice, 2025, 28(24): 3072-3078. |
[5] | ZHOU Qian, WU Xiaomin, WANG Baohua, YAN Ruohan, YU Miao, WU Jing. Study on Nomogram Prediction Model for Risk of Gastric Cancer [J]. Chinese General Practice, 2025, 28(23): 2870-2877. |
[6] | ZHAO Xiaoqing, GUO Tongtong, ZHANG Xinyi, LI Linhong, ZHANG Ya, JI Lihong, DONG Zhiwei, GAO Qianqian, CAI Weiqing, ZHENG Wengui, JING Qi. Construction and Validation of a Risk Prediction Model for Cognitive Impairment in Community-dwelling Older Adults [J]. Chinese General Practice, 2025, 28(22): 2776-2783. |
[7] | ADILI Tuersun, CHENG Gang. Meta-analysis of the Efficacy and Safety of Finerenone in the Treatment of Type 2 Diabetic Nephropathy [J]. Chinese General Practice, 2025, 28(21): 2686-2691. |
[8] | ZHANG Bingqing, WANG Zhongkai, WU Changyong, SUN Huang, LI Ruijie, LIU Wenjie, LUO Yihua, ZHENG Lihui, PENG Yunzhu. Changes and Trend Prediction in the Global Burden of Congenital Heart Defects, 1990-2021 [J]. Chinese General Practice, 2025, 28(18): 2253-2261. |
[9] | CHEN Shenglan, ZHENG Yongtao, HU Wangcheng, NI Zuowei, XIA Bing, YE Chunmei, DU Chixin, CHEN Xiaodan. Risk Prediction Model for High Myopia in Primary and Secondary School Students: Based on Nested Case-control Study [J]. Chinese General Practice, 2025, 28(09): 1115-1121. |
[10] | SHI Xiaotian, WANG Shan, YANG Huayu, YANG Yifan, LI Xu, DOU Guoze, MA Qing. A Predictive Nomogram for the Risk of Frailty/Pre-frailty on Inflammatory Biomarkers in the Elderly [J]. Chinese General Practice, 2025, 28(05): 587-593. |
[11] | DU Huijie, LIU Xingyu, XU Minghuan, YANG Xuezhi, ZHANG Huiqin, MO Jiali, LU Yi, KUANG Jie. Advances in the Prognostic Prediction of Acute Ischemic Stroke: Using Machine Learning Predictive Models as an Example [J]. Chinese General Practice, 2025, 28(05): 554-560. |
[12] | YUE Haitao, HE Chanchan, CHENG Yuyou, ZHANG Sencheng, WU You, MA Jing. Coronary Heart Disease Risk Prediction Model Based on Machine Learning [J]. Chinese General Practice, 2025, 28(04): 499-509. |
[13] | ZHANG Gaoyu, WANG Zihan, GAO Xuefei, ZHANG Jin, DAI Tiangu, HE Qing, FAN Jiarong, HUANG Li, LI Lin. Research on the Development of a Risk Model for Coronary Heart Disease in Postmenopausal Hypertensive Women Based on the Triglyceride Glucose Index Combined with Vascular Elasticity Indicators [J]. Chinese General Practice, 2025, 28(01): 39-46. |
[14] | ZHOU Zhensen, HUANG Yan, CHENG Siwei, ZHANG Xiaoyu, ZHANG Xiaoyu, SUN Ting, YANG Xianjun, XIE Hui, MA Zuchang. Construction and Validation of a Screening Model for Early Atherosclerosis Risk in the Aorta [J]. Chinese General Practice, 2024, 27(33): 4147-4154. |
[15] | LI Qiuling, TANG Wenwu, YU Yiwen, DENG Huan, YANG Xiaohua, CHEN Xiaoxia, JI Yifei. Establishment and Verification of Risk Prediction Model for Silent Brain Infarction in Maintenance Hemodialysis Patients: a Multicenter Study [J]. Chinese General Practice, 2024, 27(26): 3232-3239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||