Chinese General Practice ›› 2022, Vol. 25 ›› Issue (05): 636-642.DOI: 10.12114/j.issn.1007-9572.2021.01.114
Special Issue: 肿瘤最新文章合辑
• Cutting Edge • Previous Articles
Molecular Mechanism of Oxidative Stress Mediated Androgen Receptor Signal Reactivation in Prostatic Cancer Progression
1.Department of Urology,North China University of Science and Technology Affiliated Hospital,Tangshan 063000,China
2.Department of Public Health,North China University of Science and Technology,Tangshan 063000,China
*Corresponding authors:LI Zhiguo,Associate professor,Master supervisor;E-mail:lzg1017@163.com
CAO Fenghong,Chief physician,Master supervisor;E-mail:caofenghong@163.com
Received:
2021-07-10
Revised:
2021-12-10
Published:
2022-02-15
Online:
2022-01-29
通讯作者:
李治国,曹凤宏
基金资助:
CLC Number:
HENG Li, ZHANG Liguo, DONG Jingting, LI Zhiguo, CAO Fenghong.
Molecular Mechanism of Oxidative Stress Mediated Androgen Receptor Signal Reactivation in Prostatic Cancer Progression [J]. Chinese General Practice, 2022, 25(05): 636-642.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2021.01.114
[1] | SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics,2019 [J]. CA Cancer J Clin,2019,69(1):7-34. DOI:10.3322/caac.21551. |
[2] | MANSINHO A, MACEDO D, FERNANDES I,et al. Castration-resistant prostate cancer:mechanisms,targets and treatment[J]. Adv Exp Med Biol,2018,1096:117-133. DOI:10.1007/978-3-319-99286-0_7. |
[3] | WANG K S, RUAN H L, XU T B,et al. Recent advances on the progressive mechanism and therapy in castration-resistant prostate cancer[J]. Onco Targets Ther,2018,11:3167-3178. DOI:10.2147/OTT.S159777. |
[4] | JAKUBCZYK K, DEC K, KATDUNSKA J,et al. Reactive oxygen species - sources,functions,oxidative damage[J]. Pol Merkur Lekarski,2020,48(284):124-127. |
[5] | CRONA D J, WHANG Y E. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance[J]. Cancers(Basel),2017,9(6):E67. DOI:10.3390/cancers9060067. |
[6] | TAM N N, GAO Y, LEUNG Y K,et al. Androgenic regulation of oxidative stress in the rat prostate:involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth[J]. Am J Pathol,2003,163(6):2513-2522. DOI:10.1016/S0002-9440(10)63606-1. |
[7] | SHIOTA M, FUJIMOTO N, ITSUMI M,et al. Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress[J]. Ann Oncol,2017,28(3):569-575. DOI:10.1093/annonc/mdw646. |
[8] | FAN X C, WAARDENBERG A J, DEMUTH M,et al. TWIST1 homodimers and heterodimers orchestrate lineage-specific differentiation[J]. Mol Cell Biol,2020,40(11):e00663-19. DOI:10.1128/mcb.00663-19. |
[9] | SHIOTA M, KASHIWAGI E, YOKOMIZO A,et al. Interaction between docetaxel resistance and castration resistance in prostate cancer:implications of Twist1,YB-1,and androgen receptor[J]. Prostate,2013,73(12):1336-1344. DOI:10.1002/pros.22681. |
[10] | FAN J X, FAN Y R, WANG X,et al. PLCε regulates prostate cancer mitochondrial oxidative metabolism and migration via upregulation of Twist1[J]. J Exp Clin Cancer Res,2019,38(1):337. DOI:10.1186/s13046-019-1323-8. |
[11] | LYABIN D N, ELISEEVA I A, OVCHINNIKOV L P. YB-1 protein:functions and regulation[J]. Wiley Interdiscip Rev RNA,2014,5(1):95-110. DOI:10.1002/wrna.1200. |
[12] | SHIOTA M, SEKINO Y, TSUKAHARA S,et al. Gene amplification of YB-1 in castration-resistant prostate cancer in association with aberrant androgen receptor expression[J]. Cancer Sci,2021,112(1):323-330. DOI:10.1111/cas.14695. |
[13] | EVDOKIMOVA V, TOGNON C, NG T,et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition[J]. Cancer Cell,2009,15(5):402-415. DOI:10.1016/j.ccr.2009.03.017. |
[14] | MALINEN M, NISKANEN E A, KAIKKONEN M U,et al. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome[J]. Nucleic Acids Res,2017,45(2):619-630. DOI:10.1093/nar/gkw855. |
[15] | GLOIRE G, LEGRAND-POELS S, PIETTE J. NF-kappaB activation by reactive oxygen species:fifteen years later[J]. Biochem Pharmacol,2006,72(11):1493-1505. DOI:10.1016/j.bcp.2006.04.011. |
[16] | THOMAS-JARDIN S E, DAHL H, NAWAS A F,et al. NF-κB signaling promotes castration-resistant prostate cancer initiation and progression[J]. Pharmacol Ther,2020,211:107538. DOI:10.1016/j.pharmthera.2020.107538. |
[17] | NADIMINTY N, TUMMALA R, LIU C F,et al. NF-κB2/p52:c-myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer[J]. Mol Cancer Ther,2015,14(8):1884-1895. DOI:10.1158/1535-7163.MCT-14-1057. |
[18] | SHIOTA M, YOKOMIZO A, TAKEUCHI A,et al. Protein kinase C regulates Twist1 expression via NF-κB in prostate cancer[J]. Endocr Relat Cancer,2017,24(4):171-180. DOI:10.1530/ERC-16-0384. |
[19] | LIN Y T, CHEN L K, JIAN D Y,et al. Visfatin promotes monocyte adhesion by upregulating ICAM-1 and VCAM-1 expression in endothelial cells via activation of p38-PI3K-Akt signaling and subsequent ROS production and IKK/NF-κB activation[J]. Cell Physiol Biochem,2019,52(6):1398-1411. DOI:10.33594/000000098. |
[20] | BARLOW C A, KITIPHONGSPATTANA K, SIDDIQUI N,et al. Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells[J]. Apoptosis,2008,13(5):681-692. DOI:10.1007/s10495-008-0203-z. |
[21] | BOLDUC J A, COLLINS J A, LOESER R F. Reactive oxygen species,aging and articular cartilage homeostasis[J]. Free Radic Biol Med,2019,132:73-82. DOI:10.1016/j.freeradbiomed.2018.08.038. |
[22] | HASLE N, MATREYEK K A, FOWLER D M. The impact of genetic variants on pten molecular functions and cellular phenotypes[J]. Cold Spring Harb Perspect Med,2019,9(11):a036228. DOI:10.1101/cshperspect.a036228. |
[23] | CAI B W, OSTROWSKI M C, LEONE G,et al. Loss of PTEN accelerates NKX3.1 degradation to promote prostate cancer progression[J]. Cancer Res,2019,79(16):4124-4134. DOI:10.1158/0008-5472.CAN-18-4110. |
[24] | LI J Z, FU X Q, CAO S B,et al. Membrane-associated androgen receptor(AR)potentiates its transcriptional activities by activating heat shock protein 27(HSP27)[J]. J Biol Chem,2018,293(33):12719-12729. DOI:10.1074/jbc.RA118.003075. |
[25] | KE J R, WU G R, ZHANG J,et al. Melanoma migration is promoted by prion protein via Akt-hsp27 signaling axis[J]. Biochem Biophys Res Commun,2020,523(2):375-381. DOI:10.1016/j.bbrc.2019.12.042. |
[26] | YANG L, XIE S Z, JAMALUDDIN M S,et al. Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate,FOXO3a,and their roles in apoptosis of LNCaP prostate cancer cells[J]. J Biol Chem,2005,280(39):33558-33565. DOI:10.1074/jbc.M504461200. |
[27] | OBSIL T, OBSILOVA V. Structural aspects of protein kinase ASK1 regulation[J]. Adv Biol Regul,2017,66:31-36. DOI:10.1016/j.jbior.2017.10.002. |
[28] | HSIEH C C, PAPACONSTANTINOU J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice[J]. FASEB J,2006,20(2):259-268. DOI:10.1096/fj.05-4376com. |
[29] | HUANG W C, LI X Y, LIU J,et al. Activation of androgen receptor,lipogenesis,and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells[J]. Mol Cancer Res,2012,10(1):133-142. DOI:10.1158/1541-7786.MCR-11-0206. |
[30] | ZHANG Z, HOU X Z, SHAO C,et al. Plk1 inhibition enhances the efficacy of androgen signaling blockade in castration-resistant prostate cancer[J]. Cancer Res,2014,74(22):6635-6647. DOI:10.1158/0008-5472.CAN-14-1916. |
[31] | SHARIFI N, HURT E M, THOMAS S B,et al. Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation:implications for castration-resistant prostate cancer[J]. Clin Cancer Res,2008,14(19):6073-6080. DOI:10.1158/1078-0432.CCR-08-0591. |
[32] | BARNARD M, QUANSON J L, MOSTAGHEL E,et al. 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3(AKR1C3):Implications for castration resistant prostate cancer[J]. J Steroid Biochem Mol Biol,2018,183:192-201. DOI:10.1016/j.jsbmb.2018.06.013. |
[33] | FENG T T, ZHAO R, SUN F F,et al. TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression[J]. Oncogene,2020,39(2):356-367. DOI:10.1038/s41388-019-0991-3. |
[34] | CHHIPA R R, LEE K S, ONATE S,et al. Prx1 enhances androgen receptor function in prostate cancer cells by increasing receptor affinity to dihydrotestosterone[J]. Mol Cancer Res,2009,7(9):1543-1552. DOI:10.1158/1541-7786.MCR-08-0546. |
[35] | WANG L, SONG G, CHANG X,et al. The role of TXNDC5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway[J]. Oncogene,2015,34(36):4735-4745. DOI:10.1038/onc.2014.401. |
[36] | TAN F B, ZHU H, HE X,et al. Role of TXNDC5 in tumorigenesis of colorectal cancer cells:In vivo and in vitro evidence[J]. Int J Mol Med,2018,42(2):935-945. DOI:10.3892/ijmm.2018.3664. |
[37] | SAMANTA D, SEMENZA G L. Maintenance of redox homeostasis by hypoxia-inducible factors[J]. Redox Biol,2017,13:331-335. DOI:10.1016/j.redox.2017.05.022. |
[38] | ZHANG Y, HAN S J, PARK I,et al. Redox regulation of the tumor suppressor PTEN by hydrogen peroxide and tert-butyl hydroperoxide[J]. Int J Mol Sci,2017,18(5):E982. DOI:10.3390/ijms18050982. |
[39] | KIM K Y, PARK K I, KIM S H,et al. Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells[J]. Int J Mol Sci,2017,18(5):E1088. DOI:10.3390/ijms18051088. |
[40] | ZHAO J C, FONG K W, JIN H J,et al. FOXA1 Acts upstream of GATA2 and AR in hormonal regulation of gene expression[J]. Oncogene,2016,35(33):4335-4344. DOI:10.1038/onc.2015.496. |
[41] | CHEN H L, LIBERTINI S J, WANG Y,et al. ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines[J]. J Biol Chem,2010,285(4):2368-2374. DOI:10.1074/jbc.M109.049379. |
[42] | KUMARI N, DWARAKANATH B S, DAS A,et al. Role of interleukin-6 in cancer progression and therapeutic resistance[J]. Tumour Biol,2016,37(9):11553-11572. DOI:10.1007/s13277-016-5098-7. |
[43] | XU L J, CHEN X D, SHEN M J,et al. Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels[J]. Mol Oncol,2018,12(3):269-286. DOI:10.1002/1878-0261.12135. |
[44] | MOHANTY S K, YAGIZ K, PRADHAN D,et al. STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer[J]. Oncotarget,2017,8(49):85997-86010. DOI:10.18632/oncotarget.20844. |
[45] | HU T C, YEH J E, PINELLO L,et al. Impact of the N-terminal domain of STAT3 in STAT3-dependent transcriptional activity[J]. Mol Cell Biol,2015,35(19):3284-3300. DOI:10.1128/MCB.00060-15. |
[46] | FENG S T, TANG Q Z, SUN M,et al. Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2[J]. Mol Cancer Ther,2009,8(3):665-671. DOI:10.1158/1535-7163.MCT-08-0823. |
[47] | VIVARELLI F, CANISTRO D, CIRILLO S,et al. Co-carcinogenic effects of vitamin E in prostate[J]. Sci Rep,2019,9(1):11636. DOI:10.1038/s41598-019-48213-1. |
[48] | VANCE T M, SU J, FONTHAM E T,et al. Dietary antioxidants and prostate cancer:a review[J]. Nutr Cancer,2013,65(6):793-801. DOI:10.1080/01635581.2013.806672. |
[49] | HUANG Y, KHOR T O, SHU L M,et al. A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation[J].J Nutr,2012,142(5):818-823. DOI:10.3945/jn.111.153114. |
[50] | OGAWA Y, SAITO Y, NISHIO K,et al. Gamma-tocopheryl quinone,not alpha-tocopheryl quinone,induces adaptive response through up-regulation of cellular glutathione and cysteine availability via activation of ATF4[J]. Free Radic Res,2008,42(7):674-687. DOI:10.1080/10715760802277396. |
[51] | MIRAHMADI M, AZIMI-HASHEMI S, SABURI E,et al. Potential inhibitory effect of lycopene on prostate cancer[J]. Biomed Pharmacother,2020,129:110459. DOI:10.1016/j.biopha.2020.110459. |
[52] | BRATT O. A comparison of lycopene and orchidectomy vs orchidectomy alone in the management of advanced prostate cancer[J]. BJU Int,2005,95(1):192. DOI:10.1111/j.1464-410X.2005.4440_6.x. |
[53] | LIMPENS J, SCHRÖDER F H, DE RIDDER C M,et al. Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice[J]. J Nutr,2006,136(5):1287-1293. DOI:10.1093/jn/136.5.1287. |
[54] | BASAK P, SADHUKHAN P, SARKAR P,et al. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy[J]. Toxicol Rep,2017,4:306-318. DOI:10.1016/j.toxrep.2017.06.002. |
[55] | KHURANA N, SIKKA S C. Targeting crosstalk between nrf-2,NF-κB and androgen receptor signaling in prostate cancer[J]. Cancers(Basel),2018,10(10):E352. DOI:10.3390/cancers10100352. |
[56] | SCHULTZ M A, ABDEL-MAGEED A B, MONDAL D. The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells[J]. Cancers:Basel,2010,2(2):1354-1378. DOI:10.3390/cancers2021354. |
[57] | KHURANA N, CHANDRA P K, KIM H,et al. Bardoxolone-methyl(CDDO-me)suppresses androgen receptor and its splice-variant AR-V7 and enhances efficacy of enzalutamide in prostate cancer cells[J]. Antioxidants(Basel),2020,9(1):E68. DOI:10.3390/antiox9010068. |
[58] | KHURANA N, KIM H, CHANDRA P K,et al. Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells:Advocating a potent pharmaceutical combination against castration-resistant prostate cancer[J]. Oncol Rep,2017,38(5):2774-2786. DOI:10.3892/or.2017.5932. |
[59] | XU C J, SHEN G X, CHEN C,et al. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha,IKK pathway in human prostate cancer PC-3 cells[J]. Oncogene,2005,24(28):4486-4495. DOI:10.1038/sj.onc.1208656. |
[60] | ZHOU D Y, ZHAO S Q, DU Z Y,et al. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation[J]. Oncol Lett,2016,11(6):4160-4166. DOI:10.3892/ol.2016.4536. |
[61] | SHIN J W, CHUN K S, KIM D H,et al. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification[J]. Biochem Pharmacol,2020,173:113820. DOI:10.1016/j.bcp.2020.113820. |
[1] | TIAN Chen, LIU Jianing, TIAN Jinhui, GE Long. Living Systematic Reviews: Methods and Processes for Development [J]. Chinese General Practice, 2025, 28(30): 3853-3860. |
[2] | WANG Tingting, TANG Yong, ZHANG Wenke, LI Zhigang. Research Progress on Exercise Intervention of Hyperuricemia [J]. Chinese General Practice, 2025, 28(30): 3841-3846. |
[3] | ZHOU Sheng, DENG Changsheng, ZOU Guanyang, SONG Jianping. Research Progress on the Pathogenesis of Complications of Malaria in Cardiovascular Diseases [J]. Chinese General Practice, 2025, 28(27): 3466-3472. |
[4] | HUANG Yulin, WANG Haoyun, LI Yanmei, XIAO Xueying. Symptom Clusters in Gastric Cancer Patients Receiving Chemotherapy: a Scoping Review [J]. Chinese General Practice, 2025, 28(26): 3338-3344. |
[5] | YANG Qifen, ZHAO Huiliang, GUO Yongsheng, QU Jinglian. The Impact of the Jagged1/Notch1 Signalling Pathway on Endothelial-mesenchymal Transition in Idiopathic Pulmonary Fibrosis [J]. Chinese General Practice, 2025, 28(25): 3151-3160. |
[6] | LIU Yinyin, SUI Hongping, LI Tingting, JIANG Tongtong, SHI Tieying, XIA Yunlong. Advances in Risk Prediction Models for Cardiotoxicity Associated with Breast Cancer Treatment [J]. Chinese General Practice, 2025, 28(24): 3072-3078. |
[7] | XIAO Yao, WAN Jun. Treatment of Venous Thromboembolism in Special Populations with Direct Oral Anticoagulants [J]. Chinese General Practice, 2025, 28(24): 3066-3071. |
[8] | LI Miaoxiu, ZHU Bowen, KONG Lingjun, FANG Min. Progress in Research on Clinical Assessment Tools for Conservative Treatment of Adolescent Idiopathic Scoliosis [J]. Chinese General Practice, 2025, 28(24): 3079-3088. |
[9] | ZHOU Lianpeng, LI Weifeng, DONG Xingang, WANG Xiaoyuan. Research Progress on the Role of Copper Homeostasis Regulation Mechanism in Cognition Disorder [J]. Chinese General Practice, 2025, 28(23): 2941-2949. |
[10] | RUAN Wanbai, LI Junfeng, YIN Yanmei, PENG Lei, ZHU Kexiang. Research Progress of Targeted Therapy and Immunotherapy for Pancreatic Cancer [J]. Chinese General Practice, 2025, 28(23): 2950-2960. |
[11] | DU Qiongliang, LIN Bailang, GUO Honghua. Research Progress and Implications of Group Well-child Care [J]. Chinese General Practice, 2025, 28(21): 2672-2678. |
[12] | DONG Haocheng, HAO Xiao, AN Dong, LI Haohan, LI Shuren. Research Progress of Heart Failure with Supra-normal Ejection Fraction [J]. Chinese General Practice, 2025, 28(21): 2692-2696. |
[13] | WEN Yongxia, SUN Hai, CHEN Xiaoju, CAI Wanjing, LI Shuni, GUO Honghua. A Systematic Review of the Assessment Tools for Maternal Psychological Birth Trauma [J]. Chinese General Practice, 2025, 28(20): 2555-2561. |
[14] | CHU Tianyu, GU Yan. Carotid Artery Calcification Features in Plaque Stability and Clinical Events [J]. Chinese General Practice, 2025, 28(18): 2247-2252. |
[15] | ZHU Ziyi, HE Guixin, QIN Weibin, SONG Hui, ZHANG Liwen, TANG Weizhi, YANG Feifei, LIU Lingyun, OUYANG Bin. Research Progress of Mitochondrial Autophagy in Improving Myocardial Fibrosis after Myocardial Infarction and Intervention of Traditional Chinese Medicine [J]. Chinese General Practice, 2025, 28(18): 2294-2300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||