Chinese General Practice ›› 2022, Vol. 25 ›› Issue (05): 636-642.DOI: 10.12114/j.issn.1007-9572.2021.01.114
Special Issue: 肿瘤最新文章合集
• Cutting Edge • Previous Articles
Molecular Mechanism of Oxidative Stress Mediated Androgen Receptor Signal Reactivation in Prostatic Cancer Progression
1.Department of Urology,North China University of Science and Technology Affiliated Hospital,Tangshan 063000,China
2.Department of Public Health,North China University of Science and Technology,Tangshan 063000,China
*Corresponding authors:LI Zhiguo,Associate professor,Master supervisor;E-mail:lzg1017@163.com
CAO Fenghong,Chief physician,Master supervisor;E-mail:caofenghong@163.com
Received:
2021-07-10
Revised:
2021-12-10
Published:
2022-02-15
Online:
2022-01-29
通讯作者:
李治国,曹凤宏
基金资助:
CLC Number:
HENG Li, ZHANG Liguo, DONG Jingting, LI Zhiguo, CAO Fenghong.
Molecular Mechanism of Oxidative Stress Mediated Androgen Receptor Signal Reactivation in Prostatic Cancer Progression [J]. Chinese General Practice, 2022, 25(05): 636-642.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2021.01.114
[1] | SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics,2019 [J]. CA Cancer J Clin,2019,69(1):7-34. DOI:10.3322/caac.21551. |
[2] | MANSINHO A, MACEDO D, FERNANDES I,et al. Castration-resistant prostate cancer:mechanisms,targets and treatment[J]. Adv Exp Med Biol,2018,1096:117-133. DOI:10.1007/978-3-319-99286-0_7. |
[3] | WANG K S, RUAN H L, XU T B,et al. Recent advances on the progressive mechanism and therapy in castration-resistant prostate cancer[J]. Onco Targets Ther,2018,11:3167-3178. DOI:10.2147/OTT.S159777. |
[4] | JAKUBCZYK K, DEC K, KATDUNSKA J,et al. Reactive oxygen species - sources,functions,oxidative damage[J]. Pol Merkur Lekarski,2020,48(284):124-127. |
[5] | CRONA D J, WHANG Y E. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance[J]. Cancers(Basel),2017,9(6):E67. DOI:10.3390/cancers9060067. |
[6] | TAM N N, GAO Y, LEUNG Y K,et al. Androgenic regulation of oxidative stress in the rat prostate:involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth[J]. Am J Pathol,2003,163(6):2513-2522. DOI:10.1016/S0002-9440(10)63606-1. |
[7] | SHIOTA M, FUJIMOTO N, ITSUMI M,et al. Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress[J]. Ann Oncol,2017,28(3):569-575. DOI:10.1093/annonc/mdw646. |
[8] | FAN X C, WAARDENBERG A J, DEMUTH M,et al. TWIST1 homodimers and heterodimers orchestrate lineage-specific differentiation[J]. Mol Cell Biol,2020,40(11):e00663-19. DOI:10.1128/mcb.00663-19. |
[9] | SHIOTA M, KASHIWAGI E, YOKOMIZO A,et al. Interaction between docetaxel resistance and castration resistance in prostate cancer:implications of Twist1,YB-1,and androgen receptor[J]. Prostate,2013,73(12):1336-1344. DOI:10.1002/pros.22681. |
[10] | FAN J X, FAN Y R, WANG X,et al. PLCε regulates prostate cancer mitochondrial oxidative metabolism and migration via upregulation of Twist1[J]. J Exp Clin Cancer Res,2019,38(1):337. DOI:10.1186/s13046-019-1323-8. |
[11] | LYABIN D N, ELISEEVA I A, OVCHINNIKOV L P. YB-1 protein:functions and regulation[J]. Wiley Interdiscip Rev RNA,2014,5(1):95-110. DOI:10.1002/wrna.1200. |
[12] | SHIOTA M, SEKINO Y, TSUKAHARA S,et al. Gene amplification of YB-1 in castration-resistant prostate cancer in association with aberrant androgen receptor expression[J]. Cancer Sci,2021,112(1):323-330. DOI:10.1111/cas.14695. |
[13] | EVDOKIMOVA V, TOGNON C, NG T,et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition[J]. Cancer Cell,2009,15(5):402-415. DOI:10.1016/j.ccr.2009.03.017. |
[14] | MALINEN M, NISKANEN E A, KAIKKONEN M U,et al. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome[J]. Nucleic Acids Res,2017,45(2):619-630. DOI:10.1093/nar/gkw855. |
[15] | GLOIRE G, LEGRAND-POELS S, PIETTE J. NF-kappaB activation by reactive oxygen species:fifteen years later[J]. Biochem Pharmacol,2006,72(11):1493-1505. DOI:10.1016/j.bcp.2006.04.011. |
[16] | THOMAS-JARDIN S E, DAHL H, NAWAS A F,et al. NF-κB signaling promotes castration-resistant prostate cancer initiation and progression[J]. Pharmacol Ther,2020,211:107538. DOI:10.1016/j.pharmthera.2020.107538. |
[17] | NADIMINTY N, TUMMALA R, LIU C F,et al. NF-κB2/p52:c-myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer[J]. Mol Cancer Ther,2015,14(8):1884-1895. DOI:10.1158/1535-7163.MCT-14-1057. |
[18] | SHIOTA M, YOKOMIZO A, TAKEUCHI A,et al. Protein kinase C regulates Twist1 expression via NF-κB in prostate cancer[J]. Endocr Relat Cancer,2017,24(4):171-180. DOI:10.1530/ERC-16-0384. |
[19] | LIN Y T, CHEN L K, JIAN D Y,et al. Visfatin promotes monocyte adhesion by upregulating ICAM-1 and VCAM-1 expression in endothelial cells via activation of p38-PI3K-Akt signaling and subsequent ROS production and IKK/NF-κB activation[J]. Cell Physiol Biochem,2019,52(6):1398-1411. DOI:10.33594/000000098. |
[20] | BARLOW C A, KITIPHONGSPATTANA K, SIDDIQUI N,et al. Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells[J]. Apoptosis,2008,13(5):681-692. DOI:10.1007/s10495-008-0203-z. |
[21] | BOLDUC J A, COLLINS J A, LOESER R F. Reactive oxygen species,aging and articular cartilage homeostasis[J]. Free Radic Biol Med,2019,132:73-82. DOI:10.1016/j.freeradbiomed.2018.08.038. |
[22] | HASLE N, MATREYEK K A, FOWLER D M. The impact of genetic variants on pten molecular functions and cellular phenotypes[J]. Cold Spring Harb Perspect Med,2019,9(11):a036228. DOI:10.1101/cshperspect.a036228. |
[23] | CAI B W, OSTROWSKI M C, LEONE G,et al. Loss of PTEN accelerates NKX3.1 degradation to promote prostate cancer progression[J]. Cancer Res,2019,79(16):4124-4134. DOI:10.1158/0008-5472.CAN-18-4110. |
[24] | LI J Z, FU X Q, CAO S B,et al. Membrane-associated androgen receptor(AR)potentiates its transcriptional activities by activating heat shock protein 27(HSP27)[J]. J Biol Chem,2018,293(33):12719-12729. DOI:10.1074/jbc.RA118.003075. |
[25] | KE J R, WU G R, ZHANG J,et al. Melanoma migration is promoted by prion protein via Akt-hsp27 signaling axis[J]. Biochem Biophys Res Commun,2020,523(2):375-381. DOI:10.1016/j.bbrc.2019.12.042. |
[26] | YANG L, XIE S Z, JAMALUDDIN M S,et al. Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate,FOXO3a,and their roles in apoptosis of LNCaP prostate cancer cells[J]. J Biol Chem,2005,280(39):33558-33565. DOI:10.1074/jbc.M504461200. |
[27] | OBSIL T, OBSILOVA V. Structural aspects of protein kinase ASK1 regulation[J]. Adv Biol Regul,2017,66:31-36. DOI:10.1016/j.jbior.2017.10.002. |
[28] | HSIEH C C, PAPACONSTANTINOU J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice[J]. FASEB J,2006,20(2):259-268. DOI:10.1096/fj.05-4376com. |
[29] | HUANG W C, LI X Y, LIU J,et al. Activation of androgen receptor,lipogenesis,and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells[J]. Mol Cancer Res,2012,10(1):133-142. DOI:10.1158/1541-7786.MCR-11-0206. |
[30] | ZHANG Z, HOU X Z, SHAO C,et al. Plk1 inhibition enhances the efficacy of androgen signaling blockade in castration-resistant prostate cancer[J]. Cancer Res,2014,74(22):6635-6647. DOI:10.1158/0008-5472.CAN-14-1916. |
[31] | SHARIFI N, HURT E M, THOMAS S B,et al. Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation:implications for castration-resistant prostate cancer[J]. Clin Cancer Res,2008,14(19):6073-6080. DOI:10.1158/1078-0432.CCR-08-0591. |
[32] | BARNARD M, QUANSON J L, MOSTAGHEL E,et al. 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3(AKR1C3):Implications for castration resistant prostate cancer[J]. J Steroid Biochem Mol Biol,2018,183:192-201. DOI:10.1016/j.jsbmb.2018.06.013. |
[33] | FENG T T, ZHAO R, SUN F F,et al. TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression[J]. Oncogene,2020,39(2):356-367. DOI:10.1038/s41388-019-0991-3. |
[34] | CHHIPA R R, LEE K S, ONATE S,et al. Prx1 enhances androgen receptor function in prostate cancer cells by increasing receptor affinity to dihydrotestosterone[J]. Mol Cancer Res,2009,7(9):1543-1552. DOI:10.1158/1541-7786.MCR-08-0546. |
[35] | WANG L, SONG G, CHANG X,et al. The role of TXNDC5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway[J]. Oncogene,2015,34(36):4735-4745. DOI:10.1038/onc.2014.401. |
[36] | TAN F B, ZHU H, HE X,et al. Role of TXNDC5 in tumorigenesis of colorectal cancer cells:In vivo and in vitro evidence[J]. Int J Mol Med,2018,42(2):935-945. DOI:10.3892/ijmm.2018.3664. |
[37] | SAMANTA D, SEMENZA G L. Maintenance of redox homeostasis by hypoxia-inducible factors[J]. Redox Biol,2017,13:331-335. DOI:10.1016/j.redox.2017.05.022. |
[38] | ZHANG Y, HAN S J, PARK I,et al. Redox regulation of the tumor suppressor PTEN by hydrogen peroxide and tert-butyl hydroperoxide[J]. Int J Mol Sci,2017,18(5):E982. DOI:10.3390/ijms18050982. |
[39] | KIM K Y, PARK K I, KIM S H,et al. Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells[J]. Int J Mol Sci,2017,18(5):E1088. DOI:10.3390/ijms18051088. |
[40] | ZHAO J C, FONG K W, JIN H J,et al. FOXA1 Acts upstream of GATA2 and AR in hormonal regulation of gene expression[J]. Oncogene,2016,35(33):4335-4344. DOI:10.1038/onc.2015.496. |
[41] | CHEN H L, LIBERTINI S J, WANG Y,et al. ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines[J]. J Biol Chem,2010,285(4):2368-2374. DOI:10.1074/jbc.M109.049379. |
[42] | KUMARI N, DWARAKANATH B S, DAS A,et al. Role of interleukin-6 in cancer progression and therapeutic resistance[J]. Tumour Biol,2016,37(9):11553-11572. DOI:10.1007/s13277-016-5098-7. |
[43] | XU L J, CHEN X D, SHEN M J,et al. Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels[J]. Mol Oncol,2018,12(3):269-286. DOI:10.1002/1878-0261.12135. |
[44] | MOHANTY S K, YAGIZ K, PRADHAN D,et al. STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer[J]. Oncotarget,2017,8(49):85997-86010. DOI:10.18632/oncotarget.20844. |
[45] | HU T C, YEH J E, PINELLO L,et al. Impact of the N-terminal domain of STAT3 in STAT3-dependent transcriptional activity[J]. Mol Cell Biol,2015,35(19):3284-3300. DOI:10.1128/MCB.00060-15. |
[46] | FENG S T, TANG Q Z, SUN M,et al. Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2[J]. Mol Cancer Ther,2009,8(3):665-671. DOI:10.1158/1535-7163.MCT-08-0823. |
[47] | VIVARELLI F, CANISTRO D, CIRILLO S,et al. Co-carcinogenic effects of vitamin E in prostate[J]. Sci Rep,2019,9(1):11636. DOI:10.1038/s41598-019-48213-1. |
[48] | VANCE T M, SU J, FONTHAM E T,et al. Dietary antioxidants and prostate cancer:a review[J]. Nutr Cancer,2013,65(6):793-801. DOI:10.1080/01635581.2013.806672. |
[49] | HUANG Y, KHOR T O, SHU L M,et al. A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation[J].J Nutr,2012,142(5):818-823. DOI:10.3945/jn.111.153114. |
[50] | OGAWA Y, SAITO Y, NISHIO K,et al. Gamma-tocopheryl quinone,not alpha-tocopheryl quinone,induces adaptive response through up-regulation of cellular glutathione and cysteine availability via activation of ATF4[J]. Free Radic Res,2008,42(7):674-687. DOI:10.1080/10715760802277396. |
[51] | MIRAHMADI M, AZIMI-HASHEMI S, SABURI E,et al. Potential inhibitory effect of lycopene on prostate cancer[J]. Biomed Pharmacother,2020,129:110459. DOI:10.1016/j.biopha.2020.110459. |
[52] | BRATT O. A comparison of lycopene and orchidectomy vs orchidectomy alone in the management of advanced prostate cancer[J]. BJU Int,2005,95(1):192. DOI:10.1111/j.1464-410X.2005.4440_6.x. |
[53] | LIMPENS J, SCHRÖDER F H, DE RIDDER C M,et al. Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice[J]. J Nutr,2006,136(5):1287-1293. DOI:10.1093/jn/136.5.1287. |
[54] | BASAK P, SADHUKHAN P, SARKAR P,et al. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy[J]. Toxicol Rep,2017,4:306-318. DOI:10.1016/j.toxrep.2017.06.002. |
[55] | KHURANA N, SIKKA S C. Targeting crosstalk between nrf-2,NF-κB and androgen receptor signaling in prostate cancer[J]. Cancers(Basel),2018,10(10):E352. DOI:10.3390/cancers10100352. |
[56] | SCHULTZ M A, ABDEL-MAGEED A B, MONDAL D. The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells[J]. Cancers:Basel,2010,2(2):1354-1378. DOI:10.3390/cancers2021354. |
[57] | KHURANA N, CHANDRA P K, KIM H,et al. Bardoxolone-methyl(CDDO-me)suppresses androgen receptor and its splice-variant AR-V7 and enhances efficacy of enzalutamide in prostate cancer cells[J]. Antioxidants(Basel),2020,9(1):E68. DOI:10.3390/antiox9010068. |
[58] | KHURANA N, KIM H, CHANDRA P K,et al. Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells:Advocating a potent pharmaceutical combination against castration-resistant prostate cancer[J]. Oncol Rep,2017,38(5):2774-2786. DOI:10.3892/or.2017.5932. |
[59] | XU C J, SHEN G X, CHEN C,et al. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha,IKK pathway in human prostate cancer PC-3 cells[J]. Oncogene,2005,24(28):4486-4495. DOI:10.1038/sj.onc.1208656. |
[60] | ZHOU D Y, ZHAO S Q, DU Z Y,et al. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation[J]. Oncol Lett,2016,11(6):4160-4166. DOI:10.3892/ol.2016.4536. |
[61] | SHIN J W, CHUN K S, KIM D H,et al. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification[J]. Biochem Pharmacol,2020,173:113820. DOI:10.1016/j.bcp.2020.113820. |
[1] | WANG Xu, WEI Xu, ZHU Liguo, FENG Tianxiao, WANG Zhipeng, SHI Bin. Research Ideas of the Efficacy Mechanism and Prospect Analysis of Traditional Chinese Manipulative Therapy on Treating Spinal Degenerative Diseases with Combination of Medicine and Industry [J]. Chinese General Practice, 2023, 26(33): 4118-4124. |
[2] | XIN Gongkai, CONG Xin, YUAN Lei, CHENG Yuetong, NI Cuiping, ZHANG Weiwei, ZHANG Pingping, LIU Yu. Research Progress on Comprehensive Assessment Tools for the Elderly with Dementia [J]. Chinese General Practice, 2023, 26(33): 4103-4109. |
[3] | ZHANG Siyu, ZHOU Yuqiu, DU Xiaohui, WANG Zhengjun. Advances in Duration of Untreated Psychosis and Its Early Intervention [J]. Chinese General Practice, 2023, 26(33): 4110-4117. |
[4] | MENG Jiangtao, YANG Siyu, SUN Lei, LEI Ruining, ZHAO Xiaoxia. Advances in the Prognostic Value of Diffusion Tensor Imaging with Motor Evoked Potential for Motor Function in Cerebral Infarction Patients with Hemiplegia [J]. Chinese General Practice, 2023, 26(32): 4098-4102. |
[5] | WANG Jiaxin, ZHAO Yali. Domestic and International Assessment Tools for Medical Teamwork: a Systematic Review [J]. Chinese General Practice, 2023, 26(31): 3951-3962. |
[6] | WEI Mengyu, WANG Jiajia, ZHANG Yingying, LI Chunyang, LI Jiansheng. Research Status of Patient-reported Outcome Assessment Tools for Obstructive Sleep Apnea [J]. Chinese General Practice, 2023, 26(30): 3725-3733. |
[7] | YUAN Xiwei, NAN Yuemin. Research Progress of Structure, Function and Mechanism of Action of Mitofusin 2 in Liver Diseases [J]. Chinese General Practice, 2023, 26(30): 3841-3846. |
[8] | XIAO Yuqian, BAI Yanjie, WANG Yan, CHEN Shuying, CHEN Limin, SUN Kexin, WAN Jun. Research Progress of Mitochondrial Transfer in Post-stroke Cognitive Impairment [J]. Chinese General Practice, 2023, 26(30): 3833-3840. |
[9] | LIU Yu, YUE Ting, YANG Dongyu, ZHAO Zhongting, YANG Jibo, ZHU Tiantian. Research Progress on Mechanism of Autophagy in the Pathogenesis of Rheumatoid Arthritis [J]. Chinese General Practice, 2023, 26(29): 3710-3714. |
[10] | PU Yu, ZHANG Jixiang, DONG Weiguo. Advances in Ferroptosis and Inflammatory Bowel Disease [J]. Chinese General Practice, 2023, 26(29): 3698-3703. |
[11] | REN Yanfeng, LIU Shimeng, TAO Ying, CHEN Yingyao. A Systematic Review of Medication Preferences for Patients with Depression Based on Discrete Choice Experiment and Best-worst Scaling [J]. Chinese General Practice, 2023, 26(28): 3559-3564. |
[12] | TANG Shilan, XIE Kexin, LIU Lingyu, QI Tiantian, YANG Yansui. Advances in Rehabilitation Outcomes and Care in Patients with Prolonged Disorders of Consciousness [J]. Chinese General Practice, 2023, 26(27): 3342-3348. |
[13] | LIANG Xuemei, WANG Rui, ZHAO Yuhuan, XU Tianjiao, WANG Wei, SUN Weidong. Transcranial Low-level Laser Therapy: a Novel Treatment for Depression [J]. Chinese General Practice, 2023, 26(27): 3335-3341. |
[14] | CHEN Xiaofen, CHEN Yuhan, MA Juan. Recent Strides in Novel Treatments for Inflammatory Bowel Disease [J]. Chinese General Practice, 2023, 26(27): 3349-3354. |
[15] | ZHU Guangyu, CHENG Yuxin, LU Xuejing. Research Progress of Ocular Glymphatic System and Related Ocular Diseases [J]. Chinese General Practice, 2023, 26(26): 3330-3334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||