Chinese General Practice ›› 2022, Vol. 25 ›› Issue (02): 254-258.DOI: 10.12114/j.issn.1007-9572.2021.01.309
Special Issue: 用药最新文章合辑; 数智医疗最新文章合辑
• Latest Developments • Previous Articles
Research Progress of Machine Learning in Clinical Drug Therapy
1.Department of Pharmacy,Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital,Chengdu 610072,China
2.Personalized Drug Therapy Key Laboratory of Sichuan Province,School of Medicine,University of Electronic Science and Technology of China,Chengdu 610072,China
*Corresponding author:TONG Rongsheng,Professor,Chief pharmacist;E-mail:2207132448@qq.com
Received:
2021-02-25
Revised:
2021-06-30
Published:
2022-01-15
Online:
2021-12-29
通讯作者:
童荣生
基金资助:
CLC Number:
WU Xingwei, LIU Xinyu, LONG Enwu, TONG Rongsheng.
Research Progress of Machine Learning in Clinical Drug Therapy [J]. Chinese General Practice, 2022, 25(02): 254-258.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2021.01.309
[1] | AFARI Z,LYND L D,FITZGERALD J M,et al. Economic and health effect of full adherence to controller therapy in adults with uncontrolled asthma:a simulation study[J]. J Allergy Clin Immunol,2014,134(4):908-915.e3. DOI:10.1016/j.jaci.2014.04.009. |
[2] | DAVIS K L,EDIN H M,ALLEN J K. Prevalence and cost of medication nonadherence in Parkinson's disease:evidence from administrative claims data[J]. Mov Disord,2010,25(4):474-480. DOI:10.1002/mds.22999. |
[3] | FORMICA D,SULTANA J,CUTRONEO P M,et al. The economic burden of preventable adverse drug reactions:a systematic review of observational studies[J]. Expert Opin Drug Saf,2018,17(7):681-695. DOI:10.1080/14740338.2018.1491547. |
[4] | PIRMOHAMED M,JAMES S,MEAKIN S,et al. Adverse drug reactions as cause of admission to hospital:prospective analysis of 18 820 patients[J]. BMJ,2004,329(7456):15-19. DOI:10.1136/bmj.329.7456.15. |
[5] | HANDELMAN G S,KOK H K,CHANDRA R V,et al. eDoctor:machine learning and the future of medicine[J]. J Intern Med,2018,284(6):603-619. DOI:10.1111/joim.12822. |
[6] | JARRETT D,STRIDE E,VALLIS K,et al. Applications and limitations of machine learning in radiation oncology[J]. Br J Radiol,2019,92(1100):20190001. DOI:10.1259/bjr.20190001. |
[7] | BZDOK D,KRZYWINSKI M,ALTMAN N. Machine learning:supervised methods[J]. Nat Methods,2018,15(1):5-6. DOI:10.1038/nmeth.4551. |
[8] | BI Q F,GOODMAN K E,KAMINSKY J,et al. What is machine learning? A primer for the epidemiologist[J]. Am J Epidemiol,2019,188(12):2222-2239. DOI:10.1093/aje/kwz189. |
[9] | ESTEVA A,ROBICQUET A,RAMSUNDAR B,et al. A guide to deep learning in healthcare[J]. Nat Med,2019,25(1):24-29. DOI:10.1038/s41591-018-0316-z. |
[10] | SUO Q L,MA F L,YUAN Y,et al. Deep patient similarity learning for personalized healthcare[J]. IEEE Trans Nanobioscience,2018,17(3):219-227. DOI:10.1109/TNB.2018.2837622. |
[11] | CHENG Y T,LIN Y F,CHIANG K H,et al. Mining sequential risk patterns from large-scale clinical databases for early assessment of chronic diseases:a case study on chronic obstructive pulmonary disease[J]. IEEE J Biomed Health Inform,2017,21(2):303-311. DOI:10.1109/JBHI.2017.2657802. |
[12] | WRIGHT A P,WRIGHT A T,MCCOY A B,et al. The use of sequential pattern mining to predict next prescribed medications[J]. J Biomed Inform,2015,53:73-80. DOI:10.1016/j.jbi.2014.09.003. |
[13] | BEAM A L,KARTOUN U,PAI J K,et al. Predictive modeling of physician-patient dynamics that influence sleep medication prescriptions and clinical decision-making[J]. Sci Rep,2017,7:42282. DOI:10.1038/srep42282. |
[14] | YELIN I,SNITSER O,NOVICH G,et al. Personal clinical history predicts antibiotic resistance of urinary tract infections[J]. Nat Med,2019,25(7):1143-1152. DOI:10.1038/s41591-019-0503-6. |
[15] | ROUGH K,DAI A M,ZHANG K,et al. Predicting inpatient medication orders from electronic health record data[J]. Clin Pharmacol Ther,2020,108(1):145-154. DOI:10.1002/cpt.1826. |
[16] | 朱立强,王勇敢,李卫华,等. 采用机器学习方法建立Ⅰ类切口手术患者使用抗菌药物合理性的评价模型[J]. 中国药房,2019,30(9):1260-1265. DOI:10.6039/j.issn.1001-0408.2019.09.22. |
[17] | MA Z,WANG P,GAO Z,et al. Ensemble of machine learning algorithms using the stacked generalization approach to estimate the warfarin dose[J]. PLoS One,2018,13(10):e0205872. DOI:10.1371/journal.pone.0205872. |
[18] | ROCHE-LIMA A,ROMAN-SANTIAGO A,FELIU-MALDONADO R,et al. Machine learning algorithm for predicting warfarin dose in Caribbean hispanics using pharmacogenetic data[J]. Front Pharmacol,2019,10:1550. DOI:10.3389/fphar.2019.01550. |
[19] | TAO Y Y,CHEN Y J,FU X Y,et al. Evolutionary ensemble learning algorithm to modeling of warfarin dose prediction for Chinese[J]. IEEE J Biomed Health Inform,2019,23(1):395-406. DOI:10.1109/JBHI.2018.2812165. |
[20] | SU L X,LIU C,LI D K,et al. Toward optimal heparin dosing by comparing multiple machine learning methods:retrospective study[J]. JMIR Med Inform,2020,8(6):e17648. DOI:10.2196/17648. |
[21] | LEVY A E,BISWAS M,WEBER R,et al. Applications of machine learning in decision analysis for dose management for dofetilide[J]. PLoS One,2019,14(12):e0227324. DOI:10.1371/journal.pone.0227324. |
[22] | NIKFARJAM A,GONZALEZ G H. Pattern mining for extraction of mentions of Adverse Drug Reactions from user comments[J]. AMIA Annu Symp Proc,2011,2011:1019-1026. |
[23] | PATKI A,SARKER A,PIMPALKHUTE P,et al. Mining adverse drug reaction signals from social media:going beyond extraction[C]. BioLink-SIG,2014. |
[24] | JAMAL S,GOYAL S,SHANKER A,et al. Predicting neurological Adverse Drug Reactions based on biological,chemical and phenotypic properties of drugs using machine learning models[J]. Sci Rep,2017,7(1):1-12. DOI:10.1038/s41598-017-00908-z. |
[25] | HAMMANN F,SCHÖNING V,DREWE J. Prediction of clinically relevant drug-induced liver injury from structure using machine learning[J]. J Appl Toxicol,2019,39(3):412-419. DOI:10.1002/jat.3741. |
[26] | FENG C L,CHEN H W,YUAN X Q,et al. Gene expression data based deep learning model for accurate prediction of drug-induced liver injury in advance[J]. J Chem Inf Model,2019,59(7):3240-3250. DOI:10.1021/acs.jcim.9b00143. |
[27] | LAI N H,SHEN W C,LEE C N,et al. Comparison of the predictive outcomes for anti-tuberculosis drug-induced hepatotoxicity by different machine learning techniques[J]. Comput Methods Programs Biomed,2020,188(2):105307. DOI:10.1016/j.cmpb.2019.105307. |
[28] | DAVAZDAHEMAMI B,DELEN D. A chronological pharmacovigilance network analytics approach for predicting adverse drug events[J]. J Am Med Inform Assoc,2018,25(10):1311-1321. DOI:10.1093/jamia/ocy097. |
[29] | CHEKROUD A M,ZOTTI R J,SHEHZAD Z,et al. Cross-trial prediction of treatment outcome in depression:a machine learning approach[J]. Lancet Psychiatry,2016,3(3):243-250. DOI:10.1016/S2215-0366(15)00471-X. |
[30] | ATHREYA A P,NEAVIN D,CARRILLO-ROA T,et al. Pharmacogenomics-driven prediction of antidepressant treatment outcomes:a machine-learning approach with multi-trial replication[J]. Clin Pharmacol Ther,2019,106(4):855-865. DOI:10.1002/cpt.1482. |
[31] | SAKELLAROPOULOS T,VOUGAS K,NARANG S,et al. A deep learning framework for predicting response to therapy in cancer[J]. Cell Rep,2019,29(11):3367-3373.e4. DOI:10.1016/j.celrep.2019.11.017. |
[32] | JIANG Y M,LIU W,LI T J,et al. Prognostic and predictive value of p21-activated kinase 6 associated support vector machine classifier in gastric cancer treated by 5-fluorouracil/oxaliplatin chemotherapy[J]. EBioMedicine,2017,22:78-88. DOI:10.1016/j.ebiom.2017.06.028. |
[33] | MACESIC N,POLUBRIAGINOF F,TATONETTI N P. Machine learning:novel bioinformatics approaches for combating antimicrobial resistance[J]. Curr Opin Infect Dis,2017,30(6):511-517. DOI:10.1097/QCO.0000000000000406. |
[34] | DAVIS J J,BOISVERT S,BRETTIN T,et al. Antimicrobial resistance prediction in PATRIC and RAST[J]. Sci Rep,2016,6:27930. DOI:10.1038/srep27930. |
[35] | CHOWDHURY A S,KHALEDIAN E,BROSCHAT S L. Capreomycin resistance prediction in two species of Mycobacterium using a stacked ensemble method[J]. J Appl Microbiol,2019,127(6):1656-1664. DOI:10.1111/jam.14413. |
[36] | MANCINI A,VITO L,MARCELLI E,et al. Machine learning models predicting multidrug resistant urinary tract infections using "DsaaS" [J]. BMC Bioinformatics,2020,21():347. DOI:10.1186/s12859-020-03566-7. |
[37] | AN S,MALHOTRA K,DILLEY C,et al. Predicting drug-resistant epilepsy-A machine learning approach based on administrative claims data[J]. Epilepsy Behav,2018,89:118-125. DOI:10.1016/j.yebeh.2018.10.013. |
[38] | DORMAN S N,BARANOVA K,KNOLL J H,et al. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning[J]. Mol Oncol,2016,10(1):85-100. DOI:10.1016/j.molonc.2015.07.006. |
[39] | CHENG F X,ZHAO Z M. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic,therapeutic,chemical,and genomic properties[J]. J Am Med Inform Assoc,2014,21(e2):e278-286. DOI:10.1136/amiajnl-2013-002512. |
[40] | KASTRIN A,FERK P,LESKOŠEK B. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning[J]. PLoS One,2018,13(5):e0196865. DOI:10.1371/journal.pone.0196865. |
[41] | RYU J Y,KIM H U,LEE S Y. Deep learning improves prediction of drug-drug and drug-food interactions[J]. Proc Natl Acad Sci USA,2018,115(18):E4304-4311. DOI:10.1073/pnas.1803294115. |
[42] | TUCKER C S,BEHOORA I,NEMBHARD H B,et al. Machine learning classification of medication adherence in patients with movement disorders using non-wearable sensors[J]. Comput Biol Med,2015,66:120-134. DOI:10.1016/j.compbiomed.2015.08.012. |
[43] | MOHEBBI A,ARADÓTTIR T B,JOHANSEN A R,et al. A deep learning approach to adherence detection for type 2 diabetics[J].Annu Int Conf IEEE Eng Med Biol Soc,2017,2017:2896-2899. DOI:10.1109/EMBC.2017.8037462. |
[44] | LI Y,JASANI F,SU D,et al. Decoding nonadherence to hypertensive medication in New York City:a population segmentation approach[J]. J Prim Care Community Health,2019,10:2150132719829311. DOI:10.1177/2150132719829311. |
[45] | WU X W,YANG H B,YUAN R,et al. Predictive models of medication non-adherence risks of patients with T2D based on multiple machine learning algorithms[J]. BMJ Open Diabetes Res Care,2020,8(1):e001055. DOI:10.1136/bmjdrc-2019-001055. |
[1] | TIAN Chen, LIU Jianing, TIAN Jinhui, GE Long. Living Systematic Reviews: Methods and Processes for Development [J]. Chinese General Practice, 2025, 28(30): 3853-3860. |
[2] | WANG Tingting, TANG Yong, ZHANG Wenke, LI Zhigang. Research Progress on Exercise Intervention of Hyperuricemia [J]. Chinese General Practice, 2025, 28(30): 3841-3846. |
[3] | ZHOU Sheng, DENG Changsheng, ZOU Guanyang, SONG Jianping. Research Progress on the Pathogenesis of Complications of Malaria in Cardiovascular Diseases [J]. Chinese General Practice, 2025, 28(27): 3466-3472. |
[4] | HUANG Yulin, WANG Haoyun, LI Yanmei, XIAO Xueying. Symptom Clusters in Gastric Cancer Patients Receiving Chemotherapy: a Scoping Review [J]. Chinese General Practice, 2025, 28(26): 3338-3344. |
[5] | LIU Yinyin, SUI Hongping, LI Tingting, JIANG Tongtong, SHI Tieying, XIA Yunlong. Advances in Risk Prediction Models for Cardiotoxicity Associated with Breast Cancer Treatment [J]. Chinese General Practice, 2025, 28(24): 3072-3078. |
[6] | LI Miaoxiu, ZHU Bowen, KONG Lingjun, FANG Min. Progress in Research on Clinical Assessment Tools for Conservative Treatment of Adolescent Idiopathic Scoliosis [J]. Chinese General Practice, 2025, 28(24): 3079-3088. |
[7] | XIAO Yao, WAN Jun. Treatment of Venous Thromboembolism in Special Populations with Direct Oral Anticoagulants [J]. Chinese General Practice, 2025, 28(24): 3066-3071. |
[8] | RUAN Wanbai, LI Junfeng, YIN Yanmei, PENG Lei, ZHU Kexiang. Research Progress of Targeted Therapy and Immunotherapy for Pancreatic Cancer [J]. Chinese General Practice, 2025, 28(23): 2950-2960. |
[9] | ZHOU Lianpeng, LI Weifeng, DONG Xingang, WANG Xiaoyuan. Research Progress on the Role of Copper Homeostasis Regulation Mechanism in Cognition Disorder [J]. Chinese General Practice, 2025, 28(23): 2941-2949. |
[10] | DONG Haocheng, HAO Xiao, AN Dong, LI Haohan, LI Shuren. Research Progress of Heart Failure with Supra-normal Ejection Fraction [J]. Chinese General Practice, 2025, 28(21): 2692-2696. |
[11] | DU Qiongliang, LIN Bailang, GUO Honghua. Research Progress and Implications of Group Well-child Care [J]. Chinese General Practice, 2025, 28(21): 2672-2678. |
[12] | WEN Yongxia, SUN Hai, CHEN Xiaoju, CAI Wanjing, LI Shuni, GUO Honghua. A Systematic Review of the Assessment Tools for Maternal Psychological Birth Trauma [J]. Chinese General Practice, 2025, 28(20): 2555-2561. |
[13] | XIONG Xin, LI Yang, SHI Feng, YANG Lian, DUAN Wei, CHEN Bei, LI Yong, ZHAO Linwei, FU Quanshui, FAN Xiaoping, YANG Guoqing. Research on the Measurement System and Calibration of Thoracolumbar Vertebral Density Based on Artificial Intelligence [J]. Chinese General Practice, 2025, 28(19): 2398-2406. |
[14] | CHU Tianyu, GU Yan. Carotid Artery Calcification Features in Plaque Stability and Clinical Events [J]. Chinese General Practice, 2025, 28(18): 2247-2252. |
[15] | ZHU Ziyi, HE Guixin, QIN Weibin, SONG Hui, ZHANG Liwen, TANG Weizhi, YANG Feifei, LIU Lingyun, OUYANG Bin. Research Progress of Mitochondrial Autophagy in Improving Myocardial Fibrosis after Myocardial Infarction and Intervention of Traditional Chinese Medicine [J]. Chinese General Practice, 2025, 28(18): 2294-2300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||