Chinese General Practice ›› 2025, Vol. 28 ›› Issue (19): 2398-2406.DOI: 10.12114/j.issn.1007-9572.2023.0919
Special Issue: 数智医疗最新文章合辑
• Article • Previous Articles
Received:
2024-07-10
Revised:
2025-01-25
Published:
2025-07-05
Online:
2025-05-28
Contact:
YANG Guoqing
通讯作者:
杨国庆
作者简介:
作者贡献:
熊鑫进行论文的构思与设计,数据的收集与整理,论文撰写;李洋、石峰负责论文的修订,统计学处理;李勇、赵林伟、付泉水、范小萍负责数据提供;杨连、段维、陈蓓协助数据的收集;杨国庆负责文章的质量控制与审查,对文章整体负责,监督管理。
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2023.0919
项目 | 训练集(n=426) | 验证集(n=106) | 内部测试集(n=170) | χ2(H)值 | P值 |
---|---|---|---|---|---|
年龄[M(P25,P75),岁] | 66(57,73) | 65(55,72) | 59(55,69) | 18.424a | <0.001 |
性别[例(%)] | 14.417 | 0.001 | |||
男 | 160(37.6) | 31(29.2) | 37(21.8) | ||
女 | 266(62.4) | 75(70.8) | 133(78.2) | ||
骨密度[例(%)] | 2.614 | 0.624 | |||
骨质疏松 | 155(36.4) | 38(35.8) | 56(32.9) | ||
骨量减低 | 178(41.8) | 45(42.5) | 83(48.8) | ||
正常 | 93(21.8) | 23(21.7) | 31(18.2) |
Table 1 Demographic tables for training,validation,and internal testing sets
项目 | 训练集(n=426) | 验证集(n=106) | 内部测试集(n=170) | χ2(H)值 | P值 |
---|---|---|---|---|---|
年龄[M(P25,P75),岁] | 66(57,73) | 65(55,72) | 59(55,69) | 18.424a | <0.001 |
性别[例(%)] | 14.417 | 0.001 | |||
男 | 160(37.6) | 31(29.2) | 37(21.8) | ||
女 | 266(62.4) | 75(70.8) | 133(78.2) | ||
骨密度[例(%)] | 2.614 | 0.624 | |||
骨质疏松 | 155(36.4) | 38(35.8) | 56(32.9) | ||
骨量减低 | 178(41.8) | 45(42.5) | 83(48.8) | ||
正常 | 93(21.8) | 23(21.7) | 31(18.2) |
项目 | 数据集 | 方法 | AUC(95%CI) | 灵敏度 | 特异度 | 准确率 | 精确率 | F1值 |
---|---|---|---|---|---|---|---|---|
胸部(T5~T10) | 训练集 | BDT | 0.948(0.929~0.966) | 0.793 | 0.894 | 0.805 | 0.824 | 0.805 |
验证集 | 0.948(0.908~0.984) | 0.800 | 0.900 | 0.821 | 0.856 | 0.819 | ||
训练集 | LR | 0.891(0.860~0.922) | 0.734 | 0.860 | 0.735 | 0.737 | 0.734 | |
验证集 | 0.947(0.909~0.983) | 0.801 | 0.900 | 0.811 | 0.817 | 0.803 | ||
训练集 | RF | 0.897(0.866~0.927) | 0.760 | 0.875 | 0.765 | 0.774 | 0.766 | |
验证集 | 0.942(0.896~0.985) | 0.830 | 0.909 | 0.830 | 0.839 | 0.834 | ||
腹部(T12~L2) | 训练集 | BDT | 0.964(0.949~0.978) | 0.851 | 0.920 | 0.852 | 0.862 | 0.856 |
验证集 | 0.968(0.935~0.996) | 0.899 | 0.945 | 0.896 | 0.896 | 0.897 | ||
训练集 | LR | 0.929(0.904~0.954) | 0.803 | 0.894 | 0.800 | 0.806 | 0.804 | |
验证集 | 0.961(0.924~0.993) | 0.876 | 0.934 | 0.877 | 0.882 | 0.878 | ||
训练集 | RF | 0.915(0.887~0.942) | 0.759 | 0.874 | 0.763 | 0.770 | 0.762 | |
验证集 | 0.956(0.917-0.992) | 0.866 | 0.933 | 0.877 | 0.891 | 0.875 | ||
胸部分类模型经校准后(T5~T10-Cal) | 训练集 | BDT | 0.955(0.937~0.972) | 0.820 | 0.910 | 0.833 | 0.842 | 0.829 |
验证集 | 0.967(0.938~0.993) | 0.851 | 0.928 | 0.868 | 0.884 | 0.863 | ||
训练集 | LR | 0.948(0.929~0.967) | 0.795 | 0.895 | 0.808 | 0.826 | 0.807 | |
验证集 | 0.949(0.910~0.985) | 0.786 | 0.894 | 0.811 | 0.850 | 0.806 | ||
训练集 | RF | 0.891(0.860~0.922) | 0.734 | 0.860 | 0.735 | 0.737 | 0.734 | |
验证集 | 0.947(0.909~0.983) | 0.801 | 0.900 | 0.811 | 0.817 | 0.803 |
Table 2 Performance index results of osteoporosis classification model established by BDT,LR and RF in training set and validation set
项目 | 数据集 | 方法 | AUC(95%CI) | 灵敏度 | 特异度 | 准确率 | 精确率 | F1值 |
---|---|---|---|---|---|---|---|---|
胸部(T5~T10) | 训练集 | BDT | 0.948(0.929~0.966) | 0.793 | 0.894 | 0.805 | 0.824 | 0.805 |
验证集 | 0.948(0.908~0.984) | 0.800 | 0.900 | 0.821 | 0.856 | 0.819 | ||
训练集 | LR | 0.891(0.860~0.922) | 0.734 | 0.860 | 0.735 | 0.737 | 0.734 | |
验证集 | 0.947(0.909~0.983) | 0.801 | 0.900 | 0.811 | 0.817 | 0.803 | ||
训练集 | RF | 0.897(0.866~0.927) | 0.760 | 0.875 | 0.765 | 0.774 | 0.766 | |
验证集 | 0.942(0.896~0.985) | 0.830 | 0.909 | 0.830 | 0.839 | 0.834 | ||
腹部(T12~L2) | 训练集 | BDT | 0.964(0.949~0.978) | 0.851 | 0.920 | 0.852 | 0.862 | 0.856 |
验证集 | 0.968(0.935~0.996) | 0.899 | 0.945 | 0.896 | 0.896 | 0.897 | ||
训练集 | LR | 0.929(0.904~0.954) | 0.803 | 0.894 | 0.800 | 0.806 | 0.804 | |
验证集 | 0.961(0.924~0.993) | 0.876 | 0.934 | 0.877 | 0.882 | 0.878 | ||
训练集 | RF | 0.915(0.887~0.942) | 0.759 | 0.874 | 0.763 | 0.770 | 0.762 | |
验证集 | 0.956(0.917-0.992) | 0.866 | 0.933 | 0.877 | 0.891 | 0.875 | ||
胸部分类模型经校准后(T5~T10-Cal) | 训练集 | BDT | 0.955(0.937~0.972) | 0.820 | 0.910 | 0.833 | 0.842 | 0.829 |
验证集 | 0.967(0.938~0.993) | 0.851 | 0.928 | 0.868 | 0.884 | 0.863 | ||
训练集 | LR | 0.948(0.929~0.967) | 0.795 | 0.895 | 0.808 | 0.826 | 0.807 | |
验证集 | 0.949(0.910~0.985) | 0.786 | 0.894 | 0.811 | 0.850 | 0.806 | ||
训练集 | RF | 0.891(0.860~0.922) | 0.734 | 0.860 | 0.735 | 0.737 | 0.734 | |
验证集 | 0.947(0.909~0.983) | 0.801 | 0.900 | 0.811 | 0.817 | 0.803 |
项目 | 数据集 | 方法 | MAE | RMSE | EVS | R-Squared | ρ值 | P值 |
---|---|---|---|---|---|---|---|---|
胸部(T5~T10) | 训练集 | BDT | 13.405 | 18.359 | 0.743 | 0.743 | 0.868 | <0.001 |
验证集 | 12.513 | 15.742 | 0.793 | 0.783 | 0.894 | <0.001 | ||
训练集 | SGD | 12.385 | 17.460 | 0.767 | 0.767 | 0.876 | <0.001 | |
验证集 | 10.534 | 13.352 | 0.851 | 0.844 | 0.923 | <0.001 | ||
训练集 | RF | 13.414 | 18.268 | 0.745 | 0.745 | 0.866 | <0.001 | |
验证集 | 12.632 | 15.984 | 0.788 | 0.776 | 0.888 | <0.001 | ||
腹部(T12~L2) | 训练集 | BDT | 12.463 | 16.835 | 0.784 | 0.784 | 0.891 | <0.001 |
验证集 | 11.985 | 14.884 | 0.818 | 0.806 | 0.907 | <0.001 | ||
训练集 | SGD | 11.050 | 15.147 | 0.825 | 0.825 | 0.909 | <0.001 | |
验证集 | 9.449 | 11.563 | 0.888 | 0.883 | 0.942 | <0.001 | ||
训练集 | RF | 12.448 | 16.374 | 0.795 | 0.795 | 0.894 | <0.001 | |
验证集 | 12.633 | 15.837 | 0.796 | 0.780 | 0.892 | <0.001 | ||
胸部回归模型经校准后(T5~T10-Cal) | 训练集 | BDT | 13.573 | 18.465 | 0.740 | 0.740 | 0.863 | <0.001 |
验证集 | 12.812 | 16.006 | 0.787 | 0.775 | 0.888 | <0.001 | ||
训练集 | SGD | 12.354 | 17.471 | 0.767 | 0.767 | 0.876 | <0.001 | |
验证集 | 10.511 | 13.312 | 0.852 | 0.845 | 0.923 | <0.001 | ||
训练集 | RF | 13.471 | 18.330 | 0.743 | 0.743 | 0.864 | <0.001 | |
验证集 | 12.802 | 16.079 | 0.785 | 0.773 | 0.887 | <0.001 |
Table 3 Performance index results of osteoporosis regression model established by BDT,SGD and RF in training set and validation set
项目 | 数据集 | 方法 | MAE | RMSE | EVS | R-Squared | ρ值 | P值 |
---|---|---|---|---|---|---|---|---|
胸部(T5~T10) | 训练集 | BDT | 13.405 | 18.359 | 0.743 | 0.743 | 0.868 | <0.001 |
验证集 | 12.513 | 15.742 | 0.793 | 0.783 | 0.894 | <0.001 | ||
训练集 | SGD | 12.385 | 17.460 | 0.767 | 0.767 | 0.876 | <0.001 | |
验证集 | 10.534 | 13.352 | 0.851 | 0.844 | 0.923 | <0.001 | ||
训练集 | RF | 13.414 | 18.268 | 0.745 | 0.745 | 0.866 | <0.001 | |
验证集 | 12.632 | 15.984 | 0.788 | 0.776 | 0.888 | <0.001 | ||
腹部(T12~L2) | 训练集 | BDT | 12.463 | 16.835 | 0.784 | 0.784 | 0.891 | <0.001 |
验证集 | 11.985 | 14.884 | 0.818 | 0.806 | 0.907 | <0.001 | ||
训练集 | SGD | 11.050 | 15.147 | 0.825 | 0.825 | 0.909 | <0.001 | |
验证集 | 9.449 | 11.563 | 0.888 | 0.883 | 0.942 | <0.001 | ||
训练集 | RF | 12.448 | 16.374 | 0.795 | 0.795 | 0.894 | <0.001 | |
验证集 | 12.633 | 15.837 | 0.796 | 0.780 | 0.892 | <0.001 | ||
胸部回归模型经校准后(T5~T10-Cal) | 训练集 | BDT | 13.573 | 18.465 | 0.740 | 0.740 | 0.863 | <0.001 |
验证集 | 12.812 | 16.006 | 0.787 | 0.775 | 0.888 | <0.001 | ||
训练集 | SGD | 12.354 | 17.471 | 0.767 | 0.767 | 0.876 | <0.001 | |
验证集 | 10.511 | 13.312 | 0.852 | 0.845 | 0.923 | <0.001 | ||
训练集 | RF | 13.471 | 18.330 | 0.743 | 0.743 | 0.864 | <0.001 | |
验证集 | 12.802 | 16.079 | 0.785 | 0.773 | 0.887 | <0.001 |
项目 | AUC(95%CI) | 灵敏度 | 特异度 | 准确率 | 精确率 | F1值 |
---|---|---|---|---|---|---|
T5~T10 | 0.905(0.860~0.947) | 0.713 | 0.869 | 0.782 | 0.794 | 0.734 |
T12~L2 | 0.926(0.886~0.965) | 0.808 | 0.918 | 0.865 | 0.881 | 0.829 |
T5~T10-Cal | 0.918(0.878~0.956) | 0.746 | 0.885 | 0.806 | 0.814 | 0.766 |
Table 4 Performance index results of osteoporosis classification model established by BDT in internal testing sets
项目 | AUC(95%CI) | 灵敏度 | 特异度 | 准确率 | 精确率 | F1值 |
---|---|---|---|---|---|---|
T5~T10 | 0.905(0.860~0.947) | 0.713 | 0.869 | 0.782 | 0.794 | 0.734 |
T12~L2 | 0.926(0.886~0.965) | 0.808 | 0.918 | 0.865 | 0.881 | 0.829 |
T5~T10-Cal | 0.918(0.878~0.956) | 0.746 | 0.885 | 0.806 | 0.814 | 0.766 |
项目 | MAE | RMSE | EVS | R-Squared | ρ值 | P值 |
---|---|---|---|---|---|---|
T5~T10 | 9.255 | 11.435 | 0.819 | 0.818 | 0.905 | <0.001 |
T12~L2 | 7.294 | 9.293 | 0.883 | 0.880 | 0.940 | <0.001 |
T5~T10-Cal | 9.248 | 11.429 | 0.819 | 0.818 | 0.905 | <0.001 |
Table 5 Performance index results of osteoporosis regression model established by SGD in internal testing sets
项目 | MAE | RMSE | EVS | R-Squared | ρ值 | P值 |
---|---|---|---|---|---|---|
T5~T10 | 9.255 | 11.435 | 0.819 | 0.818 | 0.905 | <0.001 |
T12~L2 | 7.294 | 9.293 | 0.883 | 0.880 | 0.940 | <0.001 |
T5~T10-Cal | 9.248 | 11.429 | 0.819 | 0.818 | 0.905 | <0.001 |
[1] |
|
[2] |
|
[3] |
|
[4] |
《中国定量CT(QCT)骨质疏松症诊断指南》工作组,程晓光,王亮,等. 中国定量CT(QCT)骨质疏松症诊断指南(2018)[J]. 中国骨质疏松杂志,2019,25(6):733-737. DOI:10.3969/j.issn.1006-7108.2019.06.001.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[1] | TAN Wenbin, LI Jia, LIU Mingyu, LU Yongxin, CHENG Yaxin. Research Progress on the Influence of Nervous System Diseases and Related Therapeutic Drugs on Osteoporosis [J]. Chinese General Practice, 2025, 28(17): 2092-2100. |
[2] | HE Ting, LI Jia, TAN Wenbin. Research Progress of Circulatory System Diseases and Secondary Osteoporosis [J]. Chinese General Practice, 2025, 28(17): 2101-2112. |
[3] | CHEN Beibei, LI Jia, TAN Wenbin. Progress in the Research of Endocrine and Metabolic System Diseases and Secondary Osteoporosis [J]. Chinese General Practice, 2025, 28(17): 2082-2091. |
[4] | LI Jia, TAN Wenbin. The Dilemma of Prevention and Treatment of Secondary Osteoporosis and Its Countermeasures [J]. Chinese General Practice, 2025, 28(17): 2075-2081. |
[5] | SUN Qing, WU Yuxiao, CUI Limin. The Prevalence of Osteosarcopenia in Chinese Patients with Type 2 Diabetes Mellitus: a Meta-analysis [J]. Chinese General Practice, 2025, 28(12): 1520-1526. |
[6] | DU Huijie, LIU Xingyu, XU Minghuan, YANG Xuezhi, ZHANG Huiqin, MO Jiali, LU Yi, KUANG Jie. Advances in the Prognostic Prediction of Acute Ischemic Stroke: Using Machine Learning Predictive Models as an Example [J]. Chinese General Practice, 2025, 28(05): 554-560. |
[7] | YUE Haitao, HE Chanchan, CHENG Yuyou, ZHANG Sencheng, WU You, MA Jing. Coronary Heart Disease Risk Prediction Model Based on Machine Learning [J]. Chinese General Practice, 2025, 28(04): 499-509. |
[8] | WANG Zhenni, XU Yueping, XIA Kaijian, XU Xiaodan, GU Lihua. Construction of an Artificial Intelligence-assisted System for Automatic Detection of Pressure Injury Based on the YOLO Neural Network [J]. Chinese General Practice, 2024, 27(36): 4582-4590. |
[9] | LIU Zhongdian, XU Qi, CHEN Yijing, QIN Lingqiao, CHEN Shuping, TANG Weiting, ZHONG Qiuan. Identification of Carotid Atherosclerosis in Medium-high Risk Population of Cardiovascular Disease: Prediction Model and Validation Based on Machine Learning [J]. Chinese General Practice, 2024, 27(30): 3763-3771. |
[10] | YANG Chaofu, TAN Guoqing, XU Zhanwang. Research Progress on the Regulation Mechanism of Senescence-associated Secretory Phenotype in Osteoporosis [J]. Chinese General Practice, 2024, 27(29): 3685-3695. |
[11] | SU Jin, SHOU Juan, GU Wenqin, YI Chuntao, XU Liping, CHENG Lili, DING Hongjuan, ZHOU Peng, WU Yinghua, QIN Jie, XUE Bin, WEI Baichuan, WANG Qian, PENG Yan, CHENG Yimin, YANG Lan, WEI Yangyang, WANG Lei, QI Jinlin, SHAO Ying, CAI Liming. Cost Effectiveness Analysis of the Prevention and Treatment of Osteoporosis among the Entire Population in Fenglin Community, Shanghai Based on Markov Chain [J]. Chinese General Practice, 2024, 27(22): 2789-2796. |
[12] | HE Haiyang, YANG Jialing, LEI Xun. Prevalence and Influencing Factors of Osteoporosis in Postmenopausal Women: a Meta-analysis [J]. Chinese General Practice, 2024, 27(11): 1370-1379. |
[13] | ZHONG Jinjia, LI Wentao, HUANG Yafang, WU Hao. Design Features and Methodological Quality of Researches about Prediction Models Based on Machine Learning in Primary Care: a Scoping Review [J]. Chinese General Practice, 2024, 27(10): 1271-1276. |
[14] | LIANG Keke, GUO Qingge, LI Xiaohuan, MA Jianjun, YANG Hongqi, SHI Xiaoxue, FAN Yongyan, YANG Dawei, GUO Dashuai, DONG Linrui, GU Qi, LI Dongsheng. Predictive Value of Machine Learning Based on Retinal Structural Changes for Early Parkinson's Disease Diagnosis [J]. Chinese General Practice, 2024, 27(09): 1102-1108. |
[15] | ZENG Lingfeng, YANG Weiyi, LIANG Guihong, XIAO Xiao, LUO Minghui, PAN Jianke, HAN Yanhong, HUANG Hetao, ZHAO Jinlong, XU Nanjun, ZHOU Guanghui, ZHANG Xianquan, LIANG Weixiong, OU Aihua, LIU Jun, Bone and Joint Professional Committee of Degeneration and Injury of Guangdong Provincial Association of Chinese Medicine. Expert Questionnaire Survey and Result Analysis of TCM Symptom Assessment in High Risk Population of Osteoporosis in Ling-nan Region [J]. Chinese General Practice, 2023, 26(24): 2986-2991. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||