[1] |
PEPPARD P E,YOUNG T,BARNET J H,et al. Increased prevalence of sleep-disordered breathing in adults[J]. Am J Epidemiol,2013,177(9):1006-1014. DOI:10.1093/aje/kws342.
|
[2] |
DRAGER L F,POLOTSKY V Y,DONNELL C P,et al. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea[J]. Am J Physiol Heart Circ Physiol,2015,309(7):H1101-1111. DOI:10.1152/ajpheart.00094.2015.
|
[3] |
LAVIE L,VISHNEVSKY A,LAVIE P. Evidence for lipid peroxidation in obstructive sleep apnea[J]. Sleep,2004,27(1):123-128.
|
[4] |
SONG S O,HE K,NARLA R R,et al. Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity[J]. Diabetes Metab J,2019,43(2):144-155. DOI:10.4093/dmj.2018.0256.
|
[5] |
BARROS D,GARCÍA-RÍO F. Obstructive sleep apnea and dyslipidemia:from animal models to clinical evidence[J]. Sleep,2019,42(3):zsy236. DOI:10.1093/sleep/zsy236.
|
[6] |
SAVRANSKY V,JUN J,LI J,et al. Dyslipidemia and atherosclerosis induced by chronic intermittent hypoxia are attenuated by deficiency of stearoyl coenzyme A desaturase[J].Circ Res,2008,103(10):1173-1180. DOI:10.1161/circresaha.108.178533.
|
[7] |
YUAN G,NANDURI J,BHASKER C R,et al. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia[J].J Biol Chem,2005,280(6):4321-4328. DOI:10.1074/jbc.m407706200.
|
[8] |
SANZ-RUBIO D,SANZ A,VARONA L,et al. Forkhead box P3 methylation and expression in men with obstructive sleep apnea[J].Int J Mol Sci,2020,21(6):E2233. DOI:10.3390/ijms21062233.
|
[9] |
SUN Z,SHEN W. Effect of intermittent hypoxia on lipid metabolism in liver cells and the underlying mechanism[J]. Chinese Journal of Hepatology,2014,22(5):369-373. DOI:10.3760/cma.j.issn.1007-3418.2014.05.010.
|
[10] |
PARIKH M P,GUPTA N M,MCCULLOUGH A J. Obstructive sleep apnea and the liver[J].Clin Liver Dis,2019,23(2):363-382. DOI:10.1016/j.cld.2019.01.001.
|
[11] |
YUAN H B,SCHWAB R J,KIM C,et al. Relationship between body fat distribution and upper airway dynamic function during sleep in adolescents[J]. Sleep,2013,36(8):1199-1207. DOI:10.5665/sleep.2886.
|
[12] |
BOZKURT N C,BEYSEL S,KARBEK B,et al. Visceral obesity mediates the association between metabolic syndrome and obstructive sleep apnea syndrome[J]. Metab Syndr Relat Disord,2016,14(4):217-221. DOI:10.1089/met.2015.0086.
|
[13] |
LAFONTAN M,LANGIN D. Lipolysis and lipid mobilization in human adipose tissue[J]. Prog Lipid Res,2009,48(5):275-297. DOI:10.1016/j.plipres.2009.05.001.
|
[14] |
XIONG Y L,QU Z,CHEN N,et al. The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP-protein kinase A signalling pathway in white adipose tissue[J]. Mol Cell Endocrinol,2014,392(1/2):106-114. DOI:10.1016/j.mce.2014.05.012.
|
[15] |
YUAN H B,SCHWAB R J,KIM C,et al. Relationship between body fat distribution and upper airway dynamic function during sleep in adolescents[J]. Sleep,2013,36(8):1199-1207. DOI:10.5665/sleep.2886.
|
[16] |
LI M,LI X Y,LU Y. Obstructive sleep apnea syndrome and metabolic diseases[J]. Endocrinology,2018,159(7):2670-2675. DOI:10.1210/en.2018-00248.
|
[17] |
FU C,JIANG L,ZHU F,et al. Chronic intermittent hypoxia leads to insulin resistance and impaired glucose tolerance through dysregulation of adipokines in non-obese rats[J]. Sleep Breath,2015,19(4):1467-1473. DOI:10.1007/s11325-015-1144-8.
|
[18] |
ULUKAVAK CIFTCI T,KOKTURK O,BUKAN N,et al. Leptin and ghrelin levels in patients with obstructive sleep apnea syndrome[J]. Respiration,2005,72(4):395-401. DOI:10.1159/000086254.
|
[19] |
MOREAU J M,MESSENGER S A,CIRIELLO J. Effects of angiotensin II on leptin and downstream leptin signaling in the carotid body during acute intermittent hypoxia[J]. Neuroscience,2015,310:430-441. DOI:10.1016/j.neuroscience.2015.09.066.
|
[20] |
CHEN B Y,LAM K S,WANG Y,et al. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes[J]. Biochem Biophys Res Commun,2006,341(2):549-556. DOI:10.1016/j.bbrc.2006.01.004.
|
[21] |
POLYZOS S A,KOUNTOURAS J,MANTZOROS C S. Adipokines in nonalcoholic fatty liver disease[J]. Metabolism,2016,65(8):1062-1079. DOI:10.1016/j.metabol.2015.11.006.
|
[22] |
GREENHILL C. Obesity:Adiponectin receptor agonists——possible therapeutic approach?[J]. Nat Rev Endocrinol,2014,10(1):4. DOI:10.1038/nrendo.2013.231.
|
[23] |
OUCHI N,HIGUCHI A,OHASHI K,et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity[J]. Science,2010,329(5990):454-457. DOI:10.1126/science.1188280.
|
[24] |
SUN S,ZHAI H,ZHU M,et al. Insulin resistance is associated with Sfrp5 in obstructive sleep apnea[J]. Braz J Otorhinolaryngol,2019,85(6):739-745. DOI:10.1016/j.bjorl.2018.07.002.
|
[25] |
POLAK J,SHIMODA L A,DRAGER L F,et al. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice:partial improvement with cessation of the exposure[J]. Sleep,2013,36(10):1483-1490;1490A-1490B. DOI:10.5665/sleep.3040.
|
[26] |
XIA Q S,LU F E,WU F,et al. New role for ceramide in hypoxia and insulin resistance[J]. World J Gastroenterol,2020,26(18):2177-2186. DOI:10.3748/wjg.v26.i18.2177.
|
[27] |
BROUSSARD J,BRADY M J. The impact of sleep disturbances on adipocyte function and lipid metabolism[J]. Best Pract Res Clin Endocrinol Metab,2010,24(5):763-773. DOI:10.1016/j.beem.2010.08.007.
|
[28] |
NONOGAKI K. New insights into sympathetic regulation of glucose and fat metabolism[J]. Diabetologia,2000,43(5):533-549. DOI:10.1007/s001250051341.
|
[29] |
KUMAR G K,RAI V,SHARMA S D,et al. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress[J]. J Physiol,2006,575(Pt 1):229-239. DOI:10.1113/jphysiol.2006.112524.
|
[30] |
BODEN G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver[J]. Curr Diab Rep,2006,6(3):177-181. DOI:10.1007/s11892-006-0031-x.
|
[31] |
MESARWI O A,SHARMA E V,JUN J C,et al. Metabolic dysfunction in obstructive sleep apnea:a critical examination of underlying mechanisms[J]. Sleep Biol Rhythms,2015,13(1):2-17. DOI:10.1111/sbr.12078.
|
[32] |
GAINES J,VGONTZAS A N,FERNANDEZ-MENDOZA J,et al. Obstructive sleep apnea and the metabolic syndrome:The road to clinically-meaningful phenotyping,improved prognosis,and personalized treatment[J]. Sleep Med Rev,2018,42:211-219. DOI:10.1016/j.smrv.2018.08.009.
|
[33] |
ZHAO L,LIU Y,WANG X R. TNF-α promotes insulin resistance in obstructive sleep apnea-hypopnea syndrome[J]. Exp Ther Med,2021,21(6):568. DOI:10.3892/etm.2021.10000.
|
[34] |
LEE E J,HEO W,KIM J Y,et al. Alteration of inflammatory mediators in the upper and lower airways under chronic intermittent hypoxia:preliminary animal study[J]. Mediators Inflamm,2017,2017:4327237. DOI:10.1155/2017/4327237.
|
[35] |
KARACA Z,ISMAILOGULLARI S,KORKMAZ S,et al. Obstructive sleep apnoea syndrome is associated with relative hypocortisolemia and decreased hypothalamo-pituitary-adrenal axis response to 1 and 250 μg ACTH and glucagon stimulation tests[J]. Sleep Med,2013,14(2):160-164. DOI:10.1016/j.sleep.2012.10.013.
|
[36] |
ADEDAYO A M,OLAFIRANYE O,SMITH D,et al. Obstructive sleep apnea and dyslipidemia:evidence and underlying mechanism[J]. Schlaf Atmung,2014,18(1):13-18. DOI:10.1007/s11325-012-0760-9.
|
[37] |
WANG N,PENG Y J,SU X Y,et al. Histone deacetylase 5 is an early epigenetic regulator of intermittent hypoxia induced sympathetic nerve activation and blood pressure[J]. Front Physiol,2021,12:688322. DOI:10.3389/fphys.2021.688322.
|
[38] |
CHEN Y C,HSU P Y,HSIAO C C,et al. Epigenetics:a potential mechanism involved in the pathogenesis of various adverse consequences of obstructive sleep apnea[J]. Int J Mol Sci,2019,20(12):E2937. DOI:10.3390/ijms20122937.
|