Chinese General Practice ›› 2024, Vol. 27 ›› Issue (10): 1271-1276.DOI: 10.12114/j.issn.1007-9572.2023.0561
• Digital and Smart Healthcare & Informationization • Previous Articles
Received:
2023-05-11
Revised:
2023-12-27
Published:
2024-04-05
Online:
2024-01-25
Contact:
HUANG Yafang
通讯作者:
黄亚芳
作者简介:
基金资助:
文献基本特征 | 篇数 | 百分比(%) | 95%CI(%) |
---|---|---|---|
发表时间 | |||
2010—2020年 | 13 | 43.33 | (25.97~62.34) |
2021—2023年 | 17 | 56.67 | (37.66~74.03) |
地区分布 | |||
美国 | 8 | 26.67 | (12.98~46.18) |
英国 | 7 | 23.33 | (10.63~42.70) |
瑞典 | 3 | 10.00 | (2.62~27.68) |
德国 | 3 | 10.00 | (2.62~27.68) |
其他 | 9 | 30.00 | (15.41~49.56) |
研究主题 | |||
呼吸系统疾病 | 6 | 20.00 | (8.40~39.13) |
肿瘤 | 4 | 13.33 | (4.36~31.64) |
门诊预约 | 3 | 10.00 | (2.62~27.68) |
其他 | 17 | 56.67 | (37.66~74.03) |
预测模型类型 | |||
开发和内部验证 | 20 | 66.67 | (47.14~82.06) |
开发和内、外部验证 | 5 | 16.67 | (6.31~35.45) |
仅开发 | 3 | 10.00 | (2.62~27.68) |
仅外部验证 | 2 | 6.67 | (1.16~23.51) |
Table 1 Basic characteristics of the included literature
文献基本特征 | 篇数 | 百分比(%) | 95%CI(%) |
---|---|---|---|
发表时间 | |||
2010—2020年 | 13 | 43.33 | (25.97~62.34) |
2021—2023年 | 17 | 56.67 | (37.66~74.03) |
地区分布 | |||
美国 | 8 | 26.67 | (12.98~46.18) |
英国 | 7 | 23.33 | (10.63~42.70) |
瑞典 | 3 | 10.00 | (2.62~27.68) |
德国 | 3 | 10.00 | (2.62~27.68) |
其他 | 9 | 30.00 | (15.41~49.56) |
研究主题 | |||
呼吸系统疾病 | 6 | 20.00 | (8.40~39.13) |
肿瘤 | 4 | 13.33 | (4.36~31.64) |
门诊预约 | 3 | 10.00 | (2.62~27.68) |
其他 | 17 | 56.67 | (37.66~74.03) |
预测模型类型 | |||
开发和内部验证 | 20 | 66.67 | (47.14~82.06) |
开发和内、外部验证 | 5 | 16.67 | (6.31~35.45) |
仅开发 | 3 | 10.00 | (2.62~27.68) |
仅外部验证 | 2 | 6.67 | (1.16~23.51) |
机器学习算法类型 | 预测模型数 | 百分比(%) | 95%CI(%) |
---|---|---|---|
基于树的机器学习算法 | 65 | 61.32 | (51.33~70.48) |
随机森林 | 34 | 32.08 | (23.53~41.95) |
梯度提升机 | 17 | 16.02 | (9.89~24.72) |
决策树 | 10 | 9.43 | (4.86~17.06) |
极端梯度提升树 | 4 | 3.77 | (1.21~9.94) |
回归模型 | 20 | 18.87 | (12.17~27.88) |
最大似然逻辑回归 | 14 | 13.21 | (7.67~21.50) |
Lasso回归 | 2 | 1.89 | (0.33~7.32) |
最小二乘法回归 | 1 | 0.94 | (0.05~5.90) |
Cox回归 | 1 | 0.94 | (0.05~5.90) |
弹性网络回归 | 1 | 0.94 | (0.05~5.90) |
岭回归 | 1 | 0.94 | (0.05~5.90) |
神经网络 | 9 | 8.49 | (4.20~15.93) |
支持向量机 | 6 | 5.66 | (2.32~12.41) |
贝叶斯网络 | 2 | 1.89 | (0.33~7.32) |
k-邻近算法 | 2 | 1.89 | (0.33~7.32) |
朴素贝叶斯 | 1 | 0.94 | (0.05~5.90) |
超级学习者集成 | 1 | 0.94 | (0.05~5.90) |
Table 2 Types of machine learning algorithms of the included prediction models
机器学习算法类型 | 预测模型数 | 百分比(%) | 95%CI(%) |
---|---|---|---|
基于树的机器学习算法 | 65 | 61.32 | (51.33~70.48) |
随机森林 | 34 | 32.08 | (23.53~41.95) |
梯度提升机 | 17 | 16.02 | (9.89~24.72) |
决策树 | 10 | 9.43 | (4.86~17.06) |
极端梯度提升树 | 4 | 3.77 | (1.21~9.94) |
回归模型 | 20 | 18.87 | (12.17~27.88) |
最大似然逻辑回归 | 14 | 13.21 | (7.67~21.50) |
Lasso回归 | 2 | 1.89 | (0.33~7.32) |
最小二乘法回归 | 1 | 0.94 | (0.05~5.90) |
Cox回归 | 1 | 0.94 | (0.05~5.90) |
弹性网络回归 | 1 | 0.94 | (0.05~5.90) |
岭回归 | 1 | 0.94 | (0.05~5.90) |
神经网络 | 9 | 8.49 | (4.20~15.93) |
支持向量机 | 6 | 5.66 | (2.32~12.41) |
贝叶斯网络 | 2 | 1.89 | (0.33~7.32) |
k-邻近算法 | 2 | 1.89 | (0.33~7.32) |
朴素贝叶斯 | 1 | 0.94 | (0.05~5.90) |
超级学习者集成 | 1 | 0.94 | (0.05~5.90) |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[1] | JIANG Xiaoli, PENG Haibo, XU Lingfeng, XU Na, YIN Chengliang, MENG Wenqi, LIU Songyi, YIN Wenqiang, CHEN Zhongming, MA Dongping, YU Qianqian. Effectiveness Evaluation of Contracted Residents' First Contact in Primary Care in the Context of Contracted Family Doctor Services [J]. Chinese General Practice, 2024, 27(10): 1231-1237. |
[2] | LIANG Keke, GUO Qingge, LI Xiaohuan, MA Jianjun, YANG Hongqi, SHI Xiaoxue, FAN Yongyan, YANG Dawei, GUO Dashuai, DONG Linrui, GU Qi, LI Dongsheng. Predictive Value of Machine Learning Based on Retinal Structural Changes for Early Parkinson's Disease Diagnosis [J]. Chinese General Practice, 2024, 27(09): 1102-1108. |
[3] | HAN Junjie, WU Di, CHEN Zhisheng, XIAO Yang, SEN Gan. A Nomogram Prediction Model and Validation Study on the Risk of Complicated Diabetic Nephropathy in Type 2 Diabetes Patients [J]. Chinese General Practice, 2024, 27(09): 1054-1061. |
[4] | ZOU Qiong, WU Xi, ZHANG Yang, WAN Yi, CHEN Changsheng. Prediction of Type 2 Diabetic Nephropathy Based on BP Neural Network Optimized by Sparrow Search Algorithm [J]. Chinese General Practice, 2024, 27(08): 961-970. |
[5] | Quality Assessment Group for Quantitative Research,Systematic Review and Guidelines/Consensus of Chinese General Practice. Report on Methodological Quality Assessment of Primary Care and General Practice Research in China in 2021: Quantitative Research, Systematic Review and Guidelines/Consensus Section [J]. Chinese General Practice, 2024, 27(07): 773-783. |
[6] | ZHANG Xiaoyi, XU Zhihan, YUAN Beibei, WANG Sheng, LIU Xiao, ZHOU Huilan, LI Zhansheng. Patterns and Effects of Collaboration between Primary Care Providers and Medical Specialists in the Delivery of Integrated Health Care Services: a Scoping Review [J]. Chinese General Practice, 2024, 27(04): 400-407. |
[7] | ZHANG Zhengyan, WANG Zhenzhong, ZHANG Ji, GONG Enying, SHAO Ruitai. Current Status and Implications of Ecology of Medical Care Model in Health Services Research: a Scoping Review [J]. Chinese General Practice, 2024, 27(04): 391-399. |
[8] | Searle Kendall, Blashki Grant, Kakuma Ritsuko, YANG Hui, LYU Shurong, LI Baoqi, XIAO Yingying, Minas Harry. Adapting the Depression Component of WHO Mental Health Gap Intervention Guide (mhGAP-IG.v2) for Primary Care in Shenzhen, China: a Delphi Study [J]. Chinese General Practice, 2024, 27(01): 15-26. |
[9] | LIAN Lu, CHEN Jiaying, WANG Xuanxuan, LI Yahui, ZHU Ya. Current Situation and Countermeasure of Medical Service Capacity of Primary Care Physicians in China [J]. Chinese General Practice, 2023, 26(34): 4246-4253. |
[10] | YU Dehua. Scientific Research Conception Guided by General Practice Thinking [J]. Chinese General Practice, 2023, 26(31): 3872-3876. |
[11] | WANG Zhen, SHEN Guoqi, LI Yanan, ZHU Yinghua, QIU Hang, ZHENG Di, XU Tongda, LI Wenhua. Development and Validation of a Risk Prediction Model for Contrast-induced Acute Kidney Injury after Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction [J]. Chinese General Practice, 2023, 26(29): 3650-3656. |
[12] | GAO Yanli, WANG Hongjun, SUN Fei, JI Xiangqin, Changizi Roohollah. Exploration of Chronic Disease Management Model in Secondary Private General Hospital [J]. Chinese General Practice, 2023, 26(28): 3585-3590. |
[13] | ZHANG Lifeng, ZHANG Ningning, QIN Xiuqun, YANG Yi, ZHONG Dongmei, LIU Shaofei, DAI Yushen, WANG Xiaodan, WANG Mingfei. Healthcare-seeking Behavior and Influencing Factors of Children with Upper Respiratory Tract Infection in the Context of Hierarchical Medical System [J]. Chinese General Practice, 2023, 26(26): 3269-3275. |
[14] | LI Ziqi, HE Ping, YUAN Beibei, ZHANG Wei, XU Hanyi, WEI Qianchen, MENG Qingyue, XU Jin. Index System Construction and Application Case Analysis for County Health System Development Focusing on Primary Care [J]. Chinese General Practice, 2023, 26(25): 3147-3152. |
[15] | GUO Tianci, CHEN Jixin, YU Weijie, LIU Aifeng. Recent Developments in the Application of Artificial Intelligence in the Diagnosis and Treatment of Osteoarthritis [J]. Chinese General Practice, 2023, 26(19): 2428-2433. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 428
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||