Chinese General Practice ›› 2024, Vol. 27 ›› Issue (10): 1271-1276.DOI: 10.12114/j.issn.1007-9572.2023.0561
Special Issue: 家庭医学的方法学精华特刊; 数智医疗最新文章合辑
• Digital and Smart Healthcare & Informationization • Previous Articles
Received:
2023-05-11
Revised:
2023-12-27
Published:
2024-04-05
Online:
2024-01-25
Contact:
HUANG Yafang
通讯作者:
黄亚芳
作者简介:
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2023.0561
文献基本特征 | 篇数 | 百分比(%) | 95%CI(%) |
---|---|---|---|
发表时间 | |||
2010—2020年 | 13 | 43.33 | (25.97~62.34) |
2021—2023年 | 17 | 56.67 | (37.66~74.03) |
地区分布 | |||
美国 | 8 | 26.67 | (12.98~46.18) |
英国 | 7 | 23.33 | (10.63~42.70) |
瑞典 | 3 | 10.00 | (2.62~27.68) |
德国 | 3 | 10.00 | (2.62~27.68) |
其他 | 9 | 30.00 | (15.41~49.56) |
研究主题 | |||
呼吸系统疾病 | 6 | 20.00 | (8.40~39.13) |
肿瘤 | 4 | 13.33 | (4.36~31.64) |
门诊预约 | 3 | 10.00 | (2.62~27.68) |
其他 | 17 | 56.67 | (37.66~74.03) |
预测模型类型 | |||
开发和内部验证 | 20 | 66.67 | (47.14~82.06) |
开发和内、外部验证 | 5 | 16.67 | (6.31~35.45) |
仅开发 | 3 | 10.00 | (2.62~27.68) |
仅外部验证 | 2 | 6.67 | (1.16~23.51) |
Table 1 Basic characteristics of the included literature
文献基本特征 | 篇数 | 百分比(%) | 95%CI(%) |
---|---|---|---|
发表时间 | |||
2010—2020年 | 13 | 43.33 | (25.97~62.34) |
2021—2023年 | 17 | 56.67 | (37.66~74.03) |
地区分布 | |||
美国 | 8 | 26.67 | (12.98~46.18) |
英国 | 7 | 23.33 | (10.63~42.70) |
瑞典 | 3 | 10.00 | (2.62~27.68) |
德国 | 3 | 10.00 | (2.62~27.68) |
其他 | 9 | 30.00 | (15.41~49.56) |
研究主题 | |||
呼吸系统疾病 | 6 | 20.00 | (8.40~39.13) |
肿瘤 | 4 | 13.33 | (4.36~31.64) |
门诊预约 | 3 | 10.00 | (2.62~27.68) |
其他 | 17 | 56.67 | (37.66~74.03) |
预测模型类型 | |||
开发和内部验证 | 20 | 66.67 | (47.14~82.06) |
开发和内、外部验证 | 5 | 16.67 | (6.31~35.45) |
仅开发 | 3 | 10.00 | (2.62~27.68) |
仅外部验证 | 2 | 6.67 | (1.16~23.51) |
机器学习算法类型 | 预测模型数 | 百分比(%) | 95%CI(%) |
---|---|---|---|
基于树的机器学习算法 | 65 | 61.32 | (51.33~70.48) |
随机森林 | 34 | 32.08 | (23.53~41.95) |
梯度提升机 | 17 | 16.02 | (9.89~24.72) |
决策树 | 10 | 9.43 | (4.86~17.06) |
极端梯度提升树 | 4 | 3.77 | (1.21~9.94) |
回归模型 | 20 | 18.87 | (12.17~27.88) |
最大似然逻辑回归 | 14 | 13.21 | (7.67~21.50) |
Lasso回归 | 2 | 1.89 | (0.33~7.32) |
最小二乘法回归 | 1 | 0.94 | (0.05~5.90) |
Cox回归 | 1 | 0.94 | (0.05~5.90) |
弹性网络回归 | 1 | 0.94 | (0.05~5.90) |
岭回归 | 1 | 0.94 | (0.05~5.90) |
神经网络 | 9 | 8.49 | (4.20~15.93) |
支持向量机 | 6 | 5.66 | (2.32~12.41) |
贝叶斯网络 | 2 | 1.89 | (0.33~7.32) |
k-邻近算法 | 2 | 1.89 | (0.33~7.32) |
朴素贝叶斯 | 1 | 0.94 | (0.05~5.90) |
超级学习者集成 | 1 | 0.94 | (0.05~5.90) |
Table 2 Types of machine learning algorithms of the included prediction models
机器学习算法类型 | 预测模型数 | 百分比(%) | 95%CI(%) |
---|---|---|---|
基于树的机器学习算法 | 65 | 61.32 | (51.33~70.48) |
随机森林 | 34 | 32.08 | (23.53~41.95) |
梯度提升机 | 17 | 16.02 | (9.89~24.72) |
决策树 | 10 | 9.43 | (4.86~17.06) |
极端梯度提升树 | 4 | 3.77 | (1.21~9.94) |
回归模型 | 20 | 18.87 | (12.17~27.88) |
最大似然逻辑回归 | 14 | 13.21 | (7.67~21.50) |
Lasso回归 | 2 | 1.89 | (0.33~7.32) |
最小二乘法回归 | 1 | 0.94 | (0.05~5.90) |
Cox回归 | 1 | 0.94 | (0.05~5.90) |
弹性网络回归 | 1 | 0.94 | (0.05~5.90) |
岭回归 | 1 | 0.94 | (0.05~5.90) |
神经网络 | 9 | 8.49 | (4.20~15.93) |
支持向量机 | 6 | 5.66 | (2.32~12.41) |
贝叶斯网络 | 2 | 1.89 | (0.33~7.32) |
k-邻近算法 | 2 | 1.89 | (0.33~7.32) |
朴素贝叶斯 | 1 | 0.94 | (0.05~5.90) |
超级学习者集成 | 1 | 0.94 | (0.05~5.90) |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[1] | JIA Gaopeng, CHEN Qiuyu. Construction and Validation of a Risk Prediction Model for Recurrent Angina after Percutaneous Coronary Intervention in Elderly Patients with Acute ST-segment Elevation Myocardial Infarction: Based on CYP2C19-related Genetic Testing [J]. Chinese General Practice, 2025, 28(30): 3779-3786. |
[2] | LI Ling, LI Yaping, QIAN Shixing, NIE Jing, LU Chunhua, LI Xia. Research on Influencing Factors and Risk Prediction of Cognitive Function in Community-dwelling Middle-aged and Elderly People [J]. Chinese General Practice, 2025, 28(30): 3773-3778. |
[3] | HUANG Yulin, WANG Haoyun, LI Yanmei, XIAO Xueying. Symptom Clusters in Gastric Cancer Patients Receiving Chemotherapy: a Scoping Review [J]. Chinese General Practice, 2025, 28(26): 3338-3344. |
[4] | LIU Yinyin, SUI Hongping, LI Tingting, JIANG Tongtong, SHI Tieying, XIA Yunlong. Advances in Risk Prediction Models for Cardiotoxicity Associated with Breast Cancer Treatment [J]. Chinese General Practice, 2025, 28(24): 3072-3078. |
[5] | ZHOU Qian, WU Xiaomin, WANG Baohua, YAN Ruohan, YU Miao, WU Jing. Study on Nomogram Prediction Model for Risk of Gastric Cancer [J]. Chinese General Practice, 2025, 28(23): 2870-2877. |
[6] | ZHAO Xiaoqing, GUO Tongtong, ZHANG Xinyi, LI Linhong, ZHANG Ya, JI Lihong, DONG Zhiwei, GAO Qianqian, CAI Weiqing, ZHENG Wengui, JING Qi. Construction and Validation of a Risk Prediction Model for Cognitive Impairment in Community-dwelling Older Adults [J]. Chinese General Practice, 2025, 28(22): 2776-2783. |
[7] | YANG Hui. Exploring Relation between Primary Care and Inpatient Care Supply and Utilization [J]. Chinese General Practice, 2025, 28(20): 2449-2456. |
[8] | XIONG Xin, LI Yang, SHI Feng, YANG Lian, DUAN Wei, CHEN Bei, LI Yong, ZHAO Linwei, FU Quanshui, FAN Xiaoping, YANG Guoqing. Research on the Measurement System and Calibration of Thoracolumbar Vertebral Density Based on Artificial Intelligence [J]. Chinese General Practice, 2025, 28(19): 2398-2406. |
[9] | ZHANG Bingqing, WANG Zhongkai, WU Changyong, SUN Huang, LI Ruijie, LIU Wenjie, LUO Yihua, ZHENG Lihui, PENG Yunzhu. Changes and Trend Prediction in the Global Burden of Congenital Heart Defects, 1990-2021 [J]. Chinese General Practice, 2025, 28(18): 2253-2261. |
[10] | LI Yiting, TU Wenjing, YIN Tingting, MEI Ziqi, ZHANG Sumin, WANG Meng, XU Guihua. Application of Artificial Intelligence in Nutritional Management of Patients with Inflammatory Bowel Disease: a Scoping Review [J]. Chinese General Practice, 2025, 28(14): 1709-1716. |
[11] | YU Yuemin, MO Feifei, LI Lesi, PAN Jiyang. The Assessment Tools and Influencing Factors of Insomnia in Chinese Adolescents: a Scoping Review [J]. Chinese General Practice, 2025, 28(10): 1213-1219. |
[12] | CHEN Shenglan, ZHENG Yongtao, HU Wangcheng, NI Zuowei, XIA Bing, YE Chunmei, DU Chixin, CHEN Xiaodan. Risk Prediction Model for High Myopia in Primary and Secondary School Students: Based on Nested Case-control Study [J]. Chinese General Practice, 2025, 28(09): 1115-1121. |
[13] | SHI Xiaotian, WANG Shan, YANG Huayu, YANG Yifan, LI Xu, DOU Guoze, MA Qing. A Predictive Nomogram for the Risk of Frailty/Pre-frailty on Inflammatory Biomarkers in the Elderly [J]. Chinese General Practice, 2025, 28(05): 587-593. |
[14] | DU Huijie, LIU Xingyu, XU Minghuan, YANG Xuezhi, ZHANG Huiqin, MO Jiali, LU Yi, KUANG Jie. Advances in the Prognostic Prediction of Acute Ischemic Stroke: Using Machine Learning Predictive Models as an Example [J]. Chinese General Practice, 2025, 28(05): 554-560. |
[15] | YUE Haitao, HE Chanchan, CHENG Yuyou, ZHANG Sencheng, WU You, MA Jing. Coronary Heart Disease Risk Prediction Model Based on Machine Learning [J]. Chinese General Practice, 2025, 28(04): 499-509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||