[1] |
VIRANI S S, ALONSO A, BENJAMIN E J,et al. Heart disease and stroke statistics-2020 update:a report from the American heart association[J]. Circulation, 2020, 141(9):e139-596. DOI: 10.1161/CIR.0000000000000757.
|
[2] |
|
[3] |
KROEMER G, LEVINE B. Autophagic cell death:the story of a misnomer[J]. Nat Rev Mol Cell Biol, 2008, 9(12):1004-1010. DOI: 10.1038/nrm2529.
|
[4] |
GALLUZZI L, GREEN D R. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7):1682-1699. DOI: 10.1016/j.cell.2019.05.026.
|
[5] |
THOMAS R J, BEATTY A L, BECKIE T M,et al. Home-based cardiac rehabilitation:a scientific statement from the American association of cardiovascular and pulmonary rehabilitation,the American Heart Association,and the American College of Cardiology[J]. J Am Coll Cardiol, 2019, 74(1):133-153. DOI: 10.1016/j.jacc.2019.03.008.
|
[6] |
|
[7] |
PELLICCIA A, SHARMA S, GATI S,et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease[J]. Eur Heart J, 2021, 42(1):17-96. DOI: 10.1093/eurheartj/ehaa605.
|
[8] |
VEGA R B, KONHILAS J P, KELLY D P,et al. Molecular mechanisms underlying cardiac adaptation to exercise[J]. Cell Metab, 2017, 25(5):1012-1026. DOI: 10.1016/j.cmet.2017.04.025.
|
[9] |
BERNARDO B C, OOI J Y Y, WEEKS K L,et al. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease:current knowledge and emerging concepts[J]. Physiol Rev, 2018, 98(1):419-475. DOI: 10.1152/physrev.00043.2016.
|
[10] |
DOIMO S, FABRIS E, PIEPOLI M,et al. Impact of ambulatory cardiac rehabilitation on cardiovascular outcomes:a long-term follow-up study[J]. Eur Heart J, 2019, 40(8):678-685. DOI: 10.1093/eurheartj/ehy417.
|
[11] |
LI H Z, QIN S G, LIANG Q Q,et al. Exercise training enhances myocardial mitophagy and improves cardiac function via Iris in/ FNDC5-PINK1/parkin pathway in MI mice[J]. Biomedicines, 2021, 9(6):701. DOI: 10.3390/biomedicines9060701.
|
[12] |
SANCHIS-GOMAR F, LAVIE C J, MARíN J,et al. Exercise effects on cardiovascular disease:from basic aspects to clinical evidence[J]. Cardiovasc Res, 2022, 118(10):2253-2266. DOI: 10.1093/cvr/cvab272.
|
[13] |
CLARK S L Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope[J]. J Biophys Biochem Cytol, 1957, 3(3):349-362. DOI: 10.1083/jcb.3.3.349.
|
[14] |
KLIONSKY D J, ABDEL-AZIZ A K, ABDELFATAH S,et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1[J]. Autophagy, 2021, 17(1):1-382. DOI: 10.1080/15548627.2020.1797280.
|
[15] |
COSTA R, MORRISON A, WANG J,et al. Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart[J]. J Thromb Haemost, 2012, 10(9):1736-1744. DOI: 10.1111/j.1538-7836.2012.04833.x.
|
[16] |
TIAN W S, ALSAADI R, GUO Z H,et al. An antibody for analysis of autophagy induction[J]. Nat Methods, 2020, 17(2):232-239. DOI: 10.1038/s41592-019-0661-y.
|
[17] |
|
[18] |
HONG G L, RUI G, ZHANG D D,et al. A smartphone-assisted pressure-measuring-based diagnosis system for acute myocardial infarction diagnosis[J]. Int J Nanomedicine, 2019, 14:2451-2464. DOI: 10.2147/IJN.S197541.
|
[19] |
CORSETTI G, CHEN-SCARABELLI C, ROMANO C,et al. Autophagy and oncosis/necroptosis are enhanced in cardiomyocytes from heart failure patients[J]. Med Sci Monit Basic Res, 2019, 25:33-44. DOI: 10.12659/MSMBR.913436.
|
[20] |
ZHENG D D, HUO M, LI B,et al. The role of exosomes and exosomal microRNA in cardiovascular disease[J]. Front Cell Dev Biol, 2020, 8:616161. DOI: 10.3389/fcell.2020.616161.
|
[21] |
YUAN Z, HUANG W Q. New developments in exosomal lncRNAs in cardiovascular diseases[J]. Front Cardiovasc Med, 2021, 8:709169. DOI: 10.3389/fcvm.2021.709169.
|
[22] |
JUSIC A, THOMAS P B, WETTINGER S B,et al. Noncoding RNAs in age-related cardiovascular diseases[J]. Ageing Res Rev, 2022, 77:101610. DOI: 10.1016/j.arr.2022.101610.
|
[23] |
ZHU L W, LI N, SUN L B,et al. Non-coding RNAs:the key detectors and regulators in cardiovascular disease[J]. Genomics, 2021, 113(1 Pt 2):1233-1246. DOI: 10.1016/j.ygeno.2020.10.024.
|
[24] |
CHEN C, YANG S L, LI H P,et al. Mir30c is involved in diabetic cardiomyopathy through regulation of cardiac autophagy via BECN1[J]. Mol Ther Nucleic Acids, 2017, 7:127-139. DOI: 10.1016/j.omtn.2017.03.005.
|
[25] |
FENG Y, XU W T, ZHANG W,et al. LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy[J]. Theranostics, 2019, 9(15):4558-4566. DOI: 10.7150/thno.31052.
|
[26] |
SHI J Y, CHEN C, XU X,et al. miR-29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy[J]. Acta Physiol (Oxf), 2019, 227(2):e13323. DOI: 10.1111/apha.13323.
|
[27] |
JIN L H, ZHOU Y, HAN L Z,et al. microRNA302-367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy[J]. In Vitro Cell Dev Biol Anim, 2020, 56(2):112-119. DOI: 10.1007/s11626-019-00417-5.
|
[28] |
LIANG H H, SU X M, WU Q X,et al. LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting mir26a[J]. Autophagy, 2020, 16(6):1077-1091. DOI: 10.1080/15548627.2019.1659610.
|
[29] |
LIU C Y, ZHANG Y H, LI R B,et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription[J]. Nat Commun, 2018, 9(1):29. DOI: 10.1038/s41467-017-02280-y.
|
[30] |
ZHANG B F, JIANG H, CHEN J,et al. LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A[J]. J Cell Mol Med, 2020, 24(1):1099-1115. DOI: 10.1111/jcmm.14846.
|
[31] |
LEE Y, KANG E B, KWON I,et al. Cardiac kinetophagy coincides with activation of anabolic signaling[J]. Med Sci Sports Exerc, 2016, 48(2):219-226. DOI: 10.1249/MSS.0000000000000774.
|
[32] |
CHEN C Y, HSU H C, LEE B C,et al. Exercise training improves cardiac function in infarcted rabbits:involvement of autophagic function and fatty acid utilization[J]. Eur J Heart Fail, 2010, 12(4):323-330. DOI: 10.1093/eurjhf/hfq028.
|
[33] |
KOMATSU M, WAGURI S, UENO T,et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice[J]. J Cell Biol, 2005, 169(3):425-434. DOI: 10.1083/jcb.200412022.
|
[34] |
HAZARI Y, BRAVO-SAN PEDRO J M, HETZ C,et al. Autophagy in hepatic adaptation to stress[J]. J Hepatol, 2020, 72(1):183-196. DOI: 10.1016/j.jhep.2019.08.026.
|
[35] |
NICHENKO A S, SORENSEN J R, SOUTHERN W M,et al. Lifelong Ulk1-mediated autophagy deficiency in muscle induces mitochondrial dysfunction and contractile weakness[J]. Int J Mol Sci, 2021, 22(4):1937. DOI: 10.3390/ijms22041937.
|
[36] |
FERNANDES S A, ALMEIDA C F, SOUZA L S,et al. Altered in vitro muscle differentiation in X-linked myopathy with excessive autophagy[J]. Dis Model Mech, 2020, 13(2):dmm041244. DOI: 10.1242/dmm.041244.
|
[37] |
ALON T, SADEH M, LEV D,et al. X-linked myopathy with excessive autophagy:first report of an Israeli family presenting with late onset lower limb girdle weakness[J]. Neuromuscul Disord, 2021, 31(9):854-858. DOI: 10.1016/j.nmd.2021.06.013.
|
[38] |
LIAO Z F, LI D, CHEN Y L,et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats[J]. J Cell Mol Med, 2019, 23(12):8328-8342. DOI: 10.1111/jcmm.14710.
|
[39] |
WILLIS M S, MIN J N, WANG S B,et al. Carboxyl Terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise[J]. Cell Biochem Funct, 2013, 31(8):724-735. DOI: 10.1002/cbf.2962.
|
[40] |
CAMPOS J C, QUELICONI B B, BOZI L H M,et al. Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure[J]. Autophagy, 2017, 13(8):1304-1317. DOI: 10.1080/15548627.2017.1325062.
|
[41] |
TAO L C, BEI Y H, LIN S H,et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis[J]. Cell Physiol Biochem, 2015, 37(1):162-175. DOI: 10.1159/000430342.
|
[42] |
LIANG Q Q, CAI M X, ZHANG J Q,et al. Role of muscle-specific histone methyltransferase (Smyd1) in exercise-induced cardioprotection against pathological remodeling after myocardial infarction[J]. Int J Mol Sci, 2020, 21(19):E7010. DOI: 10.3390/ijms21197010.
|
[43] |
BATISTA D F, POLEGATO B F, DA SILVA R C,et al. Impact of modality and intensity of early exercise training on ventricular remodeling after myocardial infarction[J]. Oxid Med Cell Longev, 2020, 2020:5041791. DOI: 10.1155/2020/5041791.
|
[44] |
JIA D D, HOU L, LV Y Z,et al. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling[J]. J Cell Physiol, 2019, 234(12):23705-23718. DOI: 10.1002/jcp.28939.
|
[45] |
SONG W, LIANG Q Q, CAI M X,et al. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats[J]. J Cell Mol Med, 2020, 24(22):12970-12979. DOI: 10.1111/jcmm.15892.
|
[46] |
GUO C, CHEN M J, ZHAO J R,et al. Exercise training improves cardiac function and regulates myocardial mitophagy differently in ischaemic and pressure-overload heart failure mice[J]. Exp Physiol, 2022, 107(6):562-574. DOI: 10.1113/EP090374.
|
[47] |
ANKER S D, COATS A J S. Exercise for frail,elderly patients with acute heart failure - a strong step forward[J]. N Engl J Med, 2021, 385(3):276-277. DOI: 10.1056/NEJMe2106140.
|
[48] |
BOZKURT B, FONAROW G C, GOLDBERG L R,et al. Cardiac rehabilitation for patients with heart failure:JACC expert panel[J]. J Am Coll Cardiol, 2021, 77(11):1454-1469. DOI: 10.1016/j.jacc.2021.01.030.
|
[49] |
XI Y, HAO M L, LIANG Q Q,et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction[J]. J Sport Health Sci, 2021, 10(5):594-603. DOI: 10.1016/j.jshs.2020.11.010.
|
[50] |
TAM B T, PEI X M, YUNG B Y,et al. Autophagic adaptations to long-term habitual exercise in cardiac muscle[J]. Int J Sports Med, 2015, 36(7):526-534. DOI: 10.1055/s-0034-1398494.
|
[51] |
MEJíAS-PEÑA Y, RODRIGUEZ-MIGUELEZ P, FERNANDEZ-GONZALO R,et al. Effects of aerobic training on markers of autophagy in the elderly[J]. Age (Dordr), 2016, 38(2):33. DOI: 10.1007/s11357-016-9897-y.
|
[52] |
AAS S N, TØMMERBAKKE D, GODAGER S,et al. Effects of acute and chronic strength training on skeletal muscle autophagy in frail elderly men and women[J]. Exp Gerontol, 2020, 142:111122. DOI: 10.1016/j.exger.2020.111122.
|
[53] |
HENTILÄ J, AHTIAINEN J P, PAULSEN G,et al. Autophagy is induced by resistance exercise in young men,but unfolded protein response is induced regardless of age[J]. Acta Physiol (Oxf), 2018, 224(1):e13069. DOI: 10.1111/apha.13069.
|
[54] |
MOREIRA J B N, WOHLWEND M, WISLØFF U. Exercise and cardiac health:physiological and molecular insights[J]. Nat Metab, 2020, 2(9):829-839. DOI: 10.1038/s42255-020-0262-1.
|
[55] |
SEO D Y, KWAK H B, KIM A H,et al. Cardiac adaptation to exercise training in health and disease[J]. Pflugers Arch, 2020, 472(2):155-168. DOI: 10.1007/s00424-019-02266-3.
|