[1] |
AIHAITI X, CHEN S F, LI J X, et al. Prevalence of familial hypercholesterolemia and its association with coronary artery disease:a Chinese cohort study[J]. Chronic Dis Transl Med, 2023, 9(2):134-142. DOI: 10.1002/cdt3.69.
|
[2] |
ZHOU Y C, LUO G, ZHANG A, et al. Genetic identification of familial hypercholesterolemia within whole genome sequences in 6820 newborns[J]. Clin Genet, 2024, 105(3):308-312. DOI: 10.1111/cge.14453.
|
[3] |
AMERIZADEH A, JAVANMARD S H, SARRAFZADEGAN N, et al. Familial hypercholesterolemia(FH)registry worldwide:a systematic review[J]. Curr Probl Cardiol, 2022, 47(10):100999. DOI: 10.1016/j.cpcardiol.2021.100999.
|
[4] |
CHEN P P, CHEN X, ZHANG S Y. Current status of familial hypercholesterolemia in China:a need for patient FH registry systems[J]. Front Physiol, 2019, 10:280. DOI: 10.3389/fphys.2019.00280.
|
[5] |
SHI Z M, YUAN B J, ZHAO D, et al. Familial hypercholesterolemia in China:prevalence and evidence of underdetection and undertreatment in a community population[J]. Int J Cardiol, 2014, 174(3):834-836. DOI: 10.1016/j.ijcard.2014.04.165.
|
[6] |
FUTEMA M, TAYLOR-BEADLING A, WILLIAMS M, et al. Genetic testing for familial hypercholesterolemia-past,present,and future[J]. J Lipid Res, 2021, 62:100139. DOI: 10.1016/j.jlr.2021.100139.
|
[7] |
TAYLOR A, WANG D, PATEL K, et al. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project[J]. Clin Genet, 2010, 77(6):572-580. DOI: 10.1111/j.1399-0004.2009.01356.x.
|
[8] |
BODAMER O A, BERCOVICH D, SCHLABACH M, et al. Use of denaturing HPLC to provide efficient detection of mutations causing familial hypercholesterolemia[J]. Clin Chem,2002,48(11):1913-1918.
|
[9] |
JENSEN H K, JENSEN L G, HANSEN P S, et al. High sensitivity of the single-strand conformation polymorphism method for detecting sequence variations in the low-density lipoprotein receptor gene validated by DNA sequencing[J]. Clin Chem,1996,42(8 Pt 1):1140-1146.
|
[10] |
TAYLOR A, TABRAH S, WANG D, et al. Multiplex ARMS analysis to detect 13 common mutations in familial hypercholesterolaemia[J]. Clin Genet, 2007, 71(6):561-568. DOI: 10.1111/j.1399-0004.2007.00807.x.
|
[11] |
CUCHEL M, RAAL F J, HEGELE R A, et al. 2023 Update on European Atherosclerosis Society Consensus Statement on Homozygous Familial Hypercholesterolaemia:new treatments and clinical guidance[J]. Eur Heart J, 2023, 44(25):2277-2291. DOI: 10.1093/eurheartj/ehad197.
|
[12] |
IYEN B, AKYEA R K, WENG S, et al. Statin treatment and LDL-cholesterol treatment goal attainment among individuals with familial hypercholesterolaemia in primary care[J]. Open Heart, 2021, 8(2):e001817. DOI: 10.1136/openhrt-2021-001817.
|
[13] |
WATTS G F, GIDDING S S, HEGELE R A, et al. International Atherosclerosis Society guidance for implementing best practice in the care of familial hypercholesterolaemia[J]. Nat Rev Cardiol, 2023, 20(12):845-869. DOI: 10.1038/s41569-023-00892-0.
|
[14] |
WATTS G F, SULLIVAN D R, HARE D L, et al. Integrated guidance for enhancing the care of familial hypercholesterolaemia in Australia[J]. Heart Lung Circ, 2021, 30(3):324-349. DOI: 10.1016/j.hlc.2020.09.943.
|
[15] |
MACH F, BAIGENT C, CATAPANO A L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias:lipid modification to reduce cardiovascular risk[J]. Eur Heart J, 2020, 41(1):111-188. DOI: 10.1093/eurheartj/ehz455.
|
[16] |
WALD D S, BESTWICK J P, MORRIS J K, et al. Child-parent familial hypercholesterolemia screening in primary care[J]. N Engl J Med, 2016, 375(17):1628-1637. DOI: 10.1056/NEJMoa1602777.
|
[17] |
MCKAY A J, HOGAN H, HUMPHRIES S E, et al. Universal screening at age 1-2 years as an adjunct to cascade testing for familial hypercholesterolaemia in the UK:a cost-utility analysis[J]. Atherosclerosis, 2018, 275:434-443. DOI: 10.1016/j.atherosclerosis.2018.05.047.
|
[18] |
BENEDEK P, JIAO H, DUVEFELT K, et al. Founder effects facilitate the use of a genotyping-based approach to molecular diagnosis in Swedish patients with familial hypercholesterolaemia[J]. J Intern Med, 2021, 290(2):404-415. DOI: 10.1111/joim.13287.
|
[19] |
STURM A C, TRUTY R, CALLIS T E, et al. Limited-variant screening vs comprehensive genetic testing for familial hypercholesterolemia diagnosis[J]. JAMA Cardiol, 2021, 6(8):902-909. DOI: 10.1001/jamacardio.2021.1301.
|
[20] |
ZHANG Q W, CHANG G Y, TANG Y J, et al. Genotypic and phenotypic features of dyslipidemia in a sample of pediatric patients in China[J]. BMC Pediatr, 2023, 23(1):138. DOI: 10.1186/s12887-023-03952-z.
|
[21] |
BELLOWS B K, KHERA A V, ZHANG Y Y, et al. Estimated yield of screening for heterozygous familial hypercholesterolemia with and without genetic testing in US adults[J]. J Am Heart Assoc, 2022, 11(11):e025192. DOI: 10.1161/JAHA.121.025192.
|
[22] |
SRIVASTAVA R A K. A review of progress on targeting LDL receptor-dependent and-independent pathways for the treatment of hypercholesterolemia,a major risk factor of ASCVD[J]. Cells, 2023, 12(12):1648. DOI: 10.3390/cells12121648.
|
[23] |
RODRÍGUEZ-JIMÉNEZ C, DE LA PEÑA G, SANGUINO J, et al. Identification and functional analysis of ApoB variants in a cohort of hypercholesterolemic patients[J]. Int J Mol Sci, 2023, 24(8):7635. DOI: 10.3390/ijms24087635.
|
[24] |
ABIFADEL M, VARRET M, RABÈS J P, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia[J]. Nat Genet, 2003, 34(2):154-156. DOI: 10.1038/ng1161.
|
[25] |
MARAIS A D. Apolipoprotein E in lipoprotein metabolism,health and cardiovascular disease[J]. Pathology, 2019, 51(2):165-176. DOI: 10.1016/j.pathol.2018.11.002.
|
[26] |
ISMAIL A B, BALCıOĞLU Ö, ÖZCEM B, et al. ApoE gene variation's impact on cardiovascular health:a case-control study[J]. Biomedicines, 2024, 12(3):695. DOI: 10.3390/biomedicines12030695.
|
[27] |
GARCIA C K, WILUND K, ARCA M, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein[J]. Science, 2001, 292(5520):1394-1398. DOI: 10.1126/science.1060458.
|
[28] |
HOBBS H H, BROWN M S, GOLDSTEIN J L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia[J]. Hum Mutat, 1992, 1(6):445-466. DOI: 10.1002/humu.1380010602.
|
[29] |
GARCÍA-GARCÍA A B, REAL J T, PUIG O, et al. Molecular genetics of familial hypercholesterolemia in Spain:ten novel LDLR mutations and population analysis[J]. Hum Mutat, 2001, 18(5):458-459. DOI: 10.1002/humu.1218.
|
[30] |
|
[31] |
CHORA J R, IACOCCA M A, TICHÝ L, et al. The Clinical Genome Resource(ClinGen)Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification[J]. Genet Med, 2022, 24(2):293-306. DOI: 10.1016/j.gim.2021.09.012.
|
[32] |
|
[33] |
REESKAMP L F, HARTGERS M L, PETER J, et al. A deep intronic variant in LDLR in familial hypercholesterolemia[J]. Circ Genom Precis Med, 2018, 11(12):e002385. DOI: 10.1161/CIRCGEN.118.002385.
|
[34] |
REESKAMP L F, BALVERS M, PETER J, et al. Intronic variant screening with targeted next-generation sequencing reveals first pseudoexon in LDLR in familial hypercholesterolemia[J]. Atherosclerosis, 2021, 321:14-20. DOI: 10.1016/j.atherosclerosis.2021.02.003.
|
[35] |
MISEREZ A R, KELLER U. Differences in the phenotypic characteristics of subjects with familial defective apolipoprotein B-100 and familial hypercholesterolemia[J]. Arterioscler Thromb Vasc Biol, 1995, 15(10):1719-1729. DOI: 10.1161/01.atv.15.10.1719.
|
[36] |
VRABLIK M, TICHÝ L, FREIBERGER T, et al. Genetics of familial hypercholesterolemia:new insights[J]. Front Genet, 2020, 11:574474. DOI: 10.3389/fgene.2020.574474.
|
[37] |
THOMAS E R A, ATANUR S S, NORSWORTHY P J, et al. Identification and biochemical analysis of a novel ApoB mutation that causes autosomal dominant hypercholesterolemia[J]. Mol Genet Genomic Med, 2013, 1(3):155-161. DOI: 10.1002/mgg3.17.
|
[38] |
HUMPHRIES S E, WHITTALL R A, HUBBART C S, et al. Genetic causes of familial hypercholesterolaemia in patients in the UK:relation to plasma lipid levels and coronary heart disease risk[J]. J Med Genet, 2006, 43(12):943-949. DOI: 10.1136/jmg.2006.038356.
|
[39] |
GAFFNEY D, REID J M, CAMERON I M, et al. Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia[J]. Arterioscler Thromb Vasc Biol, 1995, 15(8):1025-1029. DOI: 10.1161/01.atv.15.8.1025.
|
[40] |
ALVES A C, ETXEBARRIA A, SOUTAR A K, et al. Novel functional ApoB mutations outside LDL-binding region causing familial hypercholesterolaemia[J]. Hum Mol Genet, 2014, 23(7):1817-1828. DOI: 10.1093/hmg/DDT573.
|
[41] |
KARCZEWSKI K J, FRANCIOLI L C, TIAO G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans[J]. Nature, 2020, 581(7809):434-443. DOI: 10.1038/s41586-020-2308-7.
|
[42] |
LANDRUM M J, LEE J M, RILEY G R, et al. ClinVar:public archive of relationships among sequence variation and human phenotype[J]. Nucleic Acids Res, 2014, 42(Database issue):D980-985. DOI: 10.1093/nar/gkt1113.
|
[43] |
MARDUEL M, OUGUERRAM K, SERRE V, et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the ApoE p.Leu167del mutation[J]. Hum Mutat, 2013, 34(1):83-87. DOI: 10.1002/humu.22215.
|
[44] |
WINTJENS R, BOZON D, BELABBAS K, et al. Global molecular analysis and ApoE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France[J]. J Lipid Res, 2016, 57(3):482-491. DOI: 10.1194/jlr.P055699.
|
[45] |
FELLIN R, ARCA M, ZULIANI G, et al. The history of Autosomal Recessive Hypercholesterolemia(ARH). From clinical observations to gene identification[J]. Gene, 2015, 555(1):23-32. DOI: 10.1016/j.gene.2014.09.020.
|
[46] |
NAOUMOVA R P, NEUWIRTH C, LEE P, et al. Autosomal recessive hypercholesterolaemia:long-term follow up and response to treatment[J]. Atherosclerosis, 2004, 174(1):165-172. DOI: 10.1016/j.atherosclerosis.2004.01.020.
|
[47] |
RICHARDS S, AZIZ N, BALE S, et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5):405-424. DOI: 10.1038/gim.2015.30.
|
[48] |
IACOCCA M A, WANG J, DRON J S, et al. Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia[J]. J Lipid Res, 2017, 58(11):2202-2209. DOI: 10.1194/jlr.D079301.
|
[49] |
BJORNSSON E, GUNNARSDOTTIR K, HALLDORSSON G H, et al. Lifelong Reduction in LDL(low-density lipoprotein) cholesterol due to a gain-of-function mutation in LDLR[J]. Circ Genom Precis Med, 2021, 14(1):e003029. DOI: 10.1161/CIRCGEN.120.003029.
|
[50] |
MENG F H, LIU S, XIAO J, et al. New loss-of-function mutations in PCSK9 reduce plasma LDL cholesterol[J]. Arterioscler Thromb Vasc Biol, 2023, 43(7):1219-1233. DOI: 10.1161/ATVBAHA.122.318839.
|
[51] |
RUSSELL S, BENNETT J, WELLMAN J A, et al. Efficacy and safety of voretigene neparvovec(AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy:a randomised,controlled,open-label,phase 3 trial[J]. Lancet, 2017, 390(10097):849-860. DOI: 10.1016/S0140-6736(17)31868-8.
|
[52] |
MENDELL J R, AL-ZAIDY S, SHELL R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy[J]. N Engl J Med, 2017, 377(18):1713-1722. DOI: 10.1056/NEJMoa1706198.
|
[53] |
KASSIM S H, LI H, VANDENBERGHE L H, et al. Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis[J]. PLoS One, 2010, 5(10):e13424. DOI: 10.1371/journal.pone.0013424.
|
[54] |
GREIG J A, LIMBERIS M P, BELL P, et al. Nonclinical pharmacology/toxicology study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a mouse model of homozygous familial hypercholesterolemia[J]. Hum Gene Ther Clin Dev, 2017, 28(1):28-38. DOI: 10.1089/humc.2017.007.
|
[55] |
TROMP T R, CUCHEL M. New algorithms for treating homozygous familial hypercholesterolemia[J]. Curr Opin Lipidol, 2022, 33(6):326-335. DOI: 10.1097/MOL.0000000000000853.
|
[56] |
GEORGE L A, SULLIVAN S K, GIERMASZ A, et al. Hemophilia B gene therapy with a high-specific-activity factor Ⅸ variant[J]. N Engl J Med, 2017, 377(23):2215-2227. DOI: 10.1056/NEJMoa1708538.
|
[57] |
GILLMORE J D, GANE E, TAUBEL J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J]. N Engl J Med, 2021, 385(6):493-502. DOI: 10.1056/NEJMoa2107454.
|
[58] |
FRANGOUL H, ALTSHULER D, CAPPELLINI M D, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia[J]. N Engl J Med, 2021, 384(3):252-260. DOI: 10.1056/NEJMoa2031054.
|
[59] |
MUSUNURU K, CHADWICK A C, MIZOGUCHI T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in Primates[J]. Nature, 2021, 593(7859):429-434. DOI: 10.1038/s41586-021-03534-y.
|
[60] |
DOERFLER A M, PARK S H, ASSINI J M, et al. LPA disruption with AAV-CRISPR potently lowers plasma apo(a) in transgenic mouse model:a proof-of-concept study[J]. Mol Ther Methods Clin Dev, 2022, 27:337-351. DOI: 10.1016/j.omtm.2022.10.009.
|
[61] |
ZHA Y W, LU Y Y, ZHANG T, et al. CRISPR/Cas9-mediated knockout of ApoC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits[J]. Lipids Health Dis, 2021, 20(1):180. DOI: 10.1186/s12944-021-01605-7.
|
[62] |
MUSUNURU K. Moving toward genome-editing therapies for cardiovascular diseases[J]. J Clin Invest, 2022, 132(1):e148555. DOI: 10.1172/JCI148555.
|
[63] |
LEE R G, MAZZOLA A M, BRAUN M C, et al. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models[J]. Circulation, 2023, 147(3):242-253. DOI: 10.1161/CIRCULATIONAHA.122.062132.
|
[64] |
ZEITLINGER M, BAUER M, REINDL-SCHWAIGHOFER R, et al. A phaseⅠstudy assessing the safety,tolerability,immunogenicity,and low-density lipoprotein cholesterol-lowering activity of immunotherapeutics targeting PCSK9[J]. Eur J Clin Pharmacol, 2021, 77(10):1473-1484. DOI: 10.1007/s00228-021-03149-2.
|
[65] |
DEWEY F E, GUSAROVA V, DUNBAR R L, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease[J]. N Engl J Med, 2017, 377(3):211-221. DOI: 10.1056/NEJMoa1612790.
|
[66] |
KUEHN B M. Evinacumab approval adds a new option for homozygous familial hypercholesterolemia with a hefty price tag[J]. Circulation, 2021, 143(25):2494-2496. DOI: 10.1161/CIRCULATIONAHA.121.055463.
|
[67] |
STEFANUTTI C, CHAN D C, GIACOMO S D, et al. Long-term efficacy and safety of evinacumab in patients with homozygous familial hypercholesterolemia:real-world clinical experience[J]. Pharmaceuticals, 2022, 15(11):1389. DOI: 10.3390/ph15111389.
|
[68] |
ROSENSON R S, BURGESS L J, EBENBICHLER C F, et al. Evinacumab in patients with refractory hypercholesterolemia[J]. N Engl J Med, 2020, 383(24):2307-2319. DOI: 10.1056/NEJMoa2031049.
|
[69] |
FUKAMI H, MORINAGA J, NAKAGAMI H, et al. Vaccine targeting ANGPTL3 ameliorates dyslipidemia and associated diseases in mouse models of obese dyslipidemia and familial hypercholesterolemia[J]. Cell Rep Med, 2021, 2(11):100446. DOI: 10.1016/j.xcrm.2021.100446.
|