[1] |
|
[2] |
|
[3] |
|
[4] |
RAVI P S, MOHD J B, ABID H, et al. Internet of things (IoT) applications to fight against COVID-19 pandemic[J]. Diabetes Metab Syndr, 2020, 14(4):521-524. DOI: 10.1016/j.dsx.2020.04.041.
|
[5] |
HUHN S, AXT M, GUNGA H C, et al. The impact of wearable technologies in health research:scoping review[J]. JMIR Mhealth Uhealth, 2022, 10(1):e34384. DOI: 10.2196/34384.
|
[6] |
ROBLYER D M. Perspective on the increasing role of optical wearables and remote patient monitoring in the COVID-19 era and beyond[J]. JBO, 2020, 25(10):102703. DOI: 10.1117/1.JBO.25.10.102703.
|
[7] |
CHANNA A, POPESCU N, SKIBINSKA J, et al. The rise of wearable devices during the COVID-19 pandemic:a systematic review[J]. Sensors, 2021, 21(17):5787. DOI: 10.3390/s21175787.
|
[8] |
World Health Statistics 2017-Monitoring health for the SDGs[EB/OL].[2021-05-10].
|
[9] |
WANG C, XU J Y, YANG L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health[CPH]study):a national cross-sectional study[J]. Lancet, 2018, 391(10131):1706-1717. DOI: 10.1016/S0140-6736(18)30841-9.
|
[10] |
VAN DER HEIJDEN M, LUCAS P J F, LIJNSE B, et al. An autonomous mobile system for the management of COPD[J]. J Biomed Inform, 2013, 46(3):458-469. DOI: 10.1016/j.jbi.2013.03.003.
|
[11] |
|
[12] |
PAN Z H, DICKENS A P, CHI C H, et al. Accuracy and cost-effectiveness of different screening strategies for identifying undiagnosed COPD among primary care patients (≥40 years) in China:a cross-sectional screening test accuracy study:findings from the Breathe Well group[J]. BMJ Open, 2021, 11(9):e051811. DOI: 10.1136/bmjopen-2021-051811.
|
[13] |
|
[14] |
TIPPARAJU V V, WANG D, YU J J, et al. Respiration pattern recognition by wearable mask device[J]. Biosens Bioelectron, 2020, 169:112590. DOI: 10.1016/j.bios.2020.112590.
|
[15] |
PIPEK L Z, NASCIMENTO R F V, ACENCIO M M P, et al. Comparison of SpO2 and heart rate values on Apple Watch and conventional commercial oximeters devices in patients with lung disease[J]. Sci Rep, 2021, 11(1):18901. DOI: 10.1038/s41598-021-98453-3.
|
[16] |
HAWTHORNE G, GREENING N, ESLIGER D, et al. Usability of wearable multiparameter technology to continuously monitor free-living vital signs in people living with chronic obstructive pulmonary disease:prospective observational study[J]. JMIR Hum Factors, 2022, 9(1):e30091. DOI: 10.2196/30091.
|
[17] |
|
[18] |
|
[19] |
WU C T, LI G H, HUANG C T, et al. Acute exacerbation of a chronic obstructive pulmonary disease prediction system using wearable device data,machine learning,and deep learning:development and cohort study[J]. JMIR Mhealth Uhealth, 2021, 9(5):e22591. DOI: 10.2196/22591.
|
[20] |
FERNANDEZ-GRANERO M A, SANCHEZ-MORILLO D, LEON-JIMENEZ A. Computerised analysis of telemonitored respiratory sounds for predicting acute exacerbations of COPD[J]. Sensors, 2015, 15(10):26978-26996. DOI: 10.3390/s151026978.
|
[21] |
|
[22] |
|
[23] |
GURBETA L, BADNJEVIC A, MAKSIMOVIC M, et al. A telehealth system for automated diagnosis of asthma and chronical obstructive pulmonary disease[J]. J Am Med Inform Assoc, 2018, 25(9):1213-1217. DOI: 10.1093/jamia/ocy055.
|
[24] |
CHUNG H, JEONG C, LUHACH A K, et al. Remote pulmonary function test monitoring in cloud platform via smartphone built-in microphone[J]. Evol Bioinform Online, 2019, 15:1176934319888904. DOI: 10.1177/1176934319888904.
|
[25] |
|
[26] |
VASILOPOULOU M, PAPAIOANNOU A I, KALTSAKAS G, et al. Home-based maintenance tele-rehabilitation reduces the risk for acute exacerbations of COPD,hospitalisations and emergency department visits[J]. Eur Respir J, 2017, 49(5):1602129. DOI: 10.1183/13993003.02129-2016.
|
[27] |
GAGNON S, ROSS B, BOURBEAU J. Video teleheath and pulmonary rehabilitation:need for a better understanding[J]. Am J Respir Crit Care Med, 2020, 201(1):119-120. DOI: 10.1164/rccm.201907-1394LE.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
XIANG G L, ZHU X D, MA L, et al. Clinical guidelines on the application of Internet of Things (IOT) medical technology in the rehabilitation of chronic obstructive pulmonary disease[J]. J Thorac Dis, 2021, 13(8):4629-4637. DOI: 10.21037/jtd-21-670.
|
[32] |
HONKOOP P, USMANI O, BONINI M. The Current and future role of technology in respiratory care[J]. Pulm Ther, 2022, 8(2):167-179. DOI: 10.1007/s41030-022-00191-y.
|
[33] |
SORINO C, NEGRI S, SPANEVELLO A, et al. Inhalation therapy devices for the treatment of obstructive lung diseases:the history of inhalers towards the ideal inhaler[J]. Eur J Intern Med, 2020, 75:15-18. DOI: 10.1016/j.ejim.2020.02.023.
|
[34] |
HÄUßERMANN S, ARENDSEN L J, PRITCHARD J N. Smart dry powder inhalers and intelligent adherence management[J]. Adv Drug Deliv Rev, 2022, 191:114580. DOI: 10.1016/j.addr.2022.114580.
|
[35] |
ZABCZYK C, BLAKEY J D. The effect of connected smart inhalers on medication adherence[J]. Front Med Technol, 2021, 3:657321. DOI: 10.3389/fmedt.2021.657321.
|
[36] |
JANSEN E M, VAN DE HEI S J, DIERICK B J H, et al. Global burden of medication non-adherence in chronic obstructive pulmonary disease (COPD) and asthma:a narrative review of the clinical and economic case for smart inhalers[J]. J Thorac Dis, 2021, 13(6):3846-3864. DOI: 10.21037/jtd-20-2360.
|
[37] |
BOWLER R, ALLINDER M, JACOBSON S, et al. Real-world use of rescue inhaler sensors,electronic symptom questionnaires and physical activity monitors in COPD[J]. BMJ Open Respir Res, 2019, 6(1):e000350. DOI: 10.1136/bmjresp-2018-000350.
|
[38] |
PLEASANTS R A, CHAN A H, MOSNAIM G, et al. Integrating digital inhalers into clinical care of patients with asthma and chronic obstructive pulmonary disease[J]. Respir Med, 2022, 205:107038. DOI: 10.1016/j.rmed.2022.107038.
|
[39] |
JIANG W P, WANG L L, SONG Y L. Titration and follow-up for home noninvasive positive pressure ventilation in chronic obstructive pulmonary disease:the potential role of tele-monitoring and the Internet of Things[J]. Clin Respir J, 2021, 15(7):705-715. DOI: 10.1111/crj.13352.
|
[40] |
|
[41] |
RADOGNA A V, SICILIANO P A, SABINA S, et al. A low-cost breath analyzer module in domiciliary non-invasive mechanical ventilation for remote COPD patient monitoring[J]. Sensors, 2020, 20(3):653. DOI: 10.3390/s20030653.
|
[42] |
|
[43] |
|
[44] |
PINTO A, ALMEIDA J P, PINTO S, et al. Home telemonitoring of non-invasive ventilation decreases healthcare utilisation in a prospective controlled trial of patients with amyotrophic lateral sclerosis[J]. J Neurol Neurosurg Psychiatry, 2010, 81(11):1238-1242. DOI: 10.1136/jnnp.2010.206680.
|
[45] |
TURINO C, DE BATLLE J, WOEHRLE H, et al. Management of continuous positive airway pressure treatment compliance using telemonitoring in obstructive sleep apnoea[J]. Eur Respir J, 2017, 49(2):1601128. DOI: 10.1183/13993003.01128-2016.
|
[46] |
DENNIS H, JEREMIAH W C, ADAM V B, et al.Effect of telemedicine education and telemonitoring on continuous positive airway pressure adherence. Am J Respir Crit Care Med, 2018, 197(1):117-126. DOI: 10.1164/rccm.201703-0582OC.
|
[47] |
PÉPIN J L, JULLIAN-DESAYES I, SAPÈNE M, et al. Multimodal remote monitoring of high cardiovascular risk patients with OSA initiating CPAP:a randomized trial[J]. Chest, 2019, 155(4):730-739. DOI: 10.1016/j.chest.2018.11.007.
|
[48] |
MCLEAN S, NURMATOV U, LIU J L Y, et al. Telehealthcare for chronic obstructive pulmonary disease:Cochrane Review and meta-analysis[J]. Br J Gen Pract, 2012, 62(604):e739-749. DOI: 10.3399/bjgp12X658269.
|
[49] |
SORIANO J B, GARCÍA-RÍO F, VÁZQUEZ-ESPINOSA E, et al. A multicentre,randomized controlled trial of telehealth for the management of COPD[J]. Respir Med, 2018, 144:74-81. DOI: 10.1016/j.rmed.2018.10.008.
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
VAN DER KAMP M R, KLAVER E C, THIO B J, et al. WEARCON:wearable home monitoring in children with asthma reveals a strong association with hospital based assessment of asthma control[J]. BMC Med Inform Decis Mak, 2020, 20(1):192. DOI: 10.1186/s12911-020-01210-1.
|
[57] |
ALWASHMI M F, FITZPATRICK B, FARRELL J, et al. Perceptions of patients regarding mobile health interventions for the management of chronic obstructive pulmonary disease:mixed methods study[J]. JMIR Mhealth Uhealth, 2020, 8(7):e17409. DOI: 10.2196/17409.
|
[58] |
BENTLEY C L, POWELL L, POTTER S, et al. The use of a smartphone app and an activity tracker to promote physical activity in the management of chronic obstructive pulmonary disease:randomized controlled feasibility study[J]. JMIR Mhealth Uhealth, 2020, 8(6):e16203. DOI: 10.2196/16203.
|
[59] |
|
[60] |
KHUNDAQJI H, HING W, FURNESS J, et al. Wearable technology to inform the prediction and diagnosis of cardiorespiratory events:a scoping review[J]. PeerJ, 2021, 9:e12598. DOI: 10.7717/peerj.12598.
|
[61] |
CAULFIELD B, KALJO I, DONNELLY S. Use of a consumer market activity monitoring and feedback device improves exercise capacity and activity levels in COPD[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014:1765-1768. DOI: 10.1109/EMBC.2014.6943950.
|
[62] |
YAMAMOTO A, NAKAMOTO H, YAMAGUCHI T, et al. Validity of a novel respiratory rate monitor comprising stretchable strain sensors during a 6-Min walking test in patients with chronic pulmonary obstructive disease[J]. Respir Med, 2021, 190:106675. DOI: 10.1016/j.rmed.2021.106675.
|
[63] |
KAYYALI R, SAVICKAS V, SPRUIT M A, et al. Qualitative investigation into a wearable system for chronic obstructive pulmonary disease:the stakeholders' perspective[J]. BMJ Open, 2016, 6(8):e011657. DOI: 10.1136/bmjopen-2016-011657.
|