| [1] |
BALESTRINO R, SCHAPIRA A H V. Parkinson disease[J]. Eur J Neurol, 2020, 27(1): 27-42. DOI: 10.1111/ene.14108.
|
| [2] |
MCLEAN G, HINDLE J V, GUTHRIE B, et al. Co-morbidity and polypharmacy in Parkinson's disease: insights from a large Scottish primary care database[J]. BMC Neurol, 2017, 17(1): 126. DOI: 10.1186/s12883-017-0904-4.
|
| [3] |
|
| [4] |
NALLS M A, BLAUWENDRAAT C, VALLERGA C L, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies[J]. Lancet Neurol, 2019, 18(12): 1091-1102. DOI: 10.1016/S1474-44229(19)30320-5.
|
| [5] |
QIU C X, HU G, KIVIPELTO M, et al. Association of blood pressure and hypertension with the risk of Parkinson disease: the National FINRISK Study[J]. Hypertension, 2011, 57(6): 1094-1100. DOI: 10.1161/HYPERTENSIONAHA.111.171249.
|
| [6] |
OLIVEROS E, PATEL H, KYUNG S, et al. Hypertension in older adults: assessment, management, and challenges[J]. Clin Cardiol, 2020, 43(2): 99-107. DOI: 10.1002/clc.23303.
|
| [7] |
WIRDEFELDT K, ADAMI H O, COLE P, et al. Epidemiology and etiology of Parkinson's disease: a review of the evidence[J]. Eur J Epidemiol, 2011, 26(Suppl 1): S1-58. DOI: 10.1007/s10654-011-9581-6.
|
| [8] |
HOLMES M V, ALA-KORPELA M, SMITH G D. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality[J]. Nat Rev Cardiol, 2017, 14(10): 577-590. DOI: 10.1038/nrcardio.2017.78.
|
| [9] |
KURKI M I, KARJALAINEN J, PALTA P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-518. DOI: 10.1038/s41586-022-05473-8.
|
| [10] |
DONERTAS H M, FABIAN D K, VALENZUELA M F, et al. Common genetic associations between age-related diseases[J]. Nat Aging, 2021, 1(4): 400-412. DOI: 10.1038/s43587-021-00051-5.
|
| [11] |
BULIK-SULLIVAN B, FINUCANE H K, ANTTILA V, et al. An atlas of genetic correlations across human diseases and traits[J]. Nat Genet, 2015, 47(11): 1236-1241. DOI: 10.1038/ng.3406.
|
| [12] |
BULIK-SULLIVAN B K, LOH P R, FINUCANE H K, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies[J]. Nat Genet, 2015, 47(3): 291-295. DOI: 10.1038/ng.3211.
|
| [13] |
SHI H, KICHAEV G, PASANIUC B. Contrasting the genetic architecture of 30 complex traits from summary association data[J]. Am J Hum Genet, 2016, 99(1): 139-153. DOI: 10.1016/j.ajhg.2016.05.013.
|
| [14] |
SHI H, MANCUSO N, SPENDLOVE S, et al. Local genetic correlation gives insights into the shared genetic architecture of complex traits[J]. Am J Hum Genet, 2017, 101(5): 737-751. DOI: 10.1016/j.ajhg.2017.09.022.
|
| [15] |
BHATTACHARJEE S, RAJARAMAN P, JACOBS K B, et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits[J]. Am J Hum Genet, 2012, 90(5): 821-835. DOI: 10.1016/j.ajhg.2012.03.015.
|
| [16] |
SKRIVANKOVA V W, RICHMOND R C, WOOLF B A R, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement[J]. JAMA, 2021, 326(16): 1614-1621. DOI: 10.1001/jama.2021.18236.
|
| [17] |
SKRIVANKOVA V W, RICHMOND R C, WOOLF B A R, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation(STROBE-MR): explanation and elaboration[J]. BMJ, 2021, 375: n2233. DOI: 10.1136/bmj.n2233.
|
| [18] |
VANDERWEELE T J, TCHETGEN TCHETGEN E J, CORNELIS M, et al. Methodological challenges in mendelian randomization[J]. Epidemiology, 2014, 25(3): 427-435. DOI: 10.1097/EDE.0000000000000081.
|
| [19] |
XU Q, NI J J, HAN B X, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample mendelian randomization study[J]. Front Immunol, 2022, 12: 746998. DOI: 10.3389/fimmu.2021.746998.
|
| [20] |
LI P S, WANG H Y, GUO L, et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample mendelian randomization study[J]. BMC Med, 2022, 20(1): 443. DOI: 10.1186/s12916-022-02657-x.
|
| [21] |
LIN G H, CHAN H L, WANG H L. The significance of keratinized mucosa on implant health: a systematic review[J]. J Periodontol, 2013, 84(12): 1755-1767. DOI: 10.1902/jop.2013.120688.
|
| [22] |
HIRAWA N, FUJIWARA A, UMEMURA S. ATP2B1 and blood pressure: from associations to pathophysiology[J]. Curr Opin Nephrol Hypertens, 2013, 22(2): 177-184. DOI: 10.1097/MNH.0b013e32835da4ca.
|
| [23] |
SOMBIÉ H K, KOLOGO J K, TCHELOUGOU D, et al. Positive association between ATP2B1 rs17249754 and essential hypertension: a case-control study in Burkina Faso, West Africa[J]. BMC Cardiovasc Disord, 2019, 19(1): 155. DOI: 10.1186/s12872-019-1136-x.
|
| [24] |
LISS B, SURMEIER D J. Calcium channels and selective neuronal vulnerability in Parkinson's disease[M]// Voltage-Gated Calcium Channels. Cham: Springer International Publishing, 2022: 575-598. DOI: 10.1007/978-3-031-08881-0_22.
|
| [25] |
NG Y F, NG E, LIM E W, et al. Case-control study of hypertension and Parkinson's disease[J]. NPJ Parkinsons Dis, 2021, 7(1): 63. DOI: 10.1038/s41531-021-00202-w.
|