[1] |
|
[2] |
SUN H, SAEEDI P, KARURANGA S,et al. Erratum to "IDF Diabetes Atlas:global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045" [Diabetes Res Clin Pract,183(2022)109119][J]. Diabetes Res Clin Pract, 2023, 204:110945. DOI: 10.1016/j.diabres.2023.110945.
|
[3] |
ARMSTRONG D G, BOULTON A J M, BUS S A. Diabetic foot ulcers and their recurrence[J]. N Engl J Med, 2017, 376(24):2367-2375. DOI: 10.1056/NEJMra1615439.
|
[4] |
WANG K J,WANG Y C,SHI W L,et al. Diagnosis and treatment of diabetic foot ulcer complicated with lower extremity vasculopathy:consensus recommendation from the Chinese Medical Association(CMA),Chinese Medical Doctor Association(CMDA)[J]. Diabetes Metab Res Rev,2024,40(3):e3776.
|
[5] |
ZHANG Y Q,LAZZARINI P A,MCPHAIL S M,et al. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016[J]. Diabetes Care,2020,43(5):964-974.
|
[6] |
ZHANG P Z,LU J,JING Y L,et al. Global epidemiology of diabetic foot ulceration:a systematic review and meta-analysis [J]. Ann Med,2017,49(2):106-116.
|
[7] |
MCDERMOTT K,FANG M,BOULTON A J M,et al. Etiology,epidemiology,and disparities in the burden of diabetic foot ulcers[J]. Diabetes Care,2023,46(1):209-221.
|
[8] |
OKONKWO U A,CHEN L,MA D,et al. Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing[J]. PLoS One,2020,15(4):e0231962.
|
[9] |
刘贤彬. 血糖对糖尿病创面愈合的作用及糖尿病足预后的影响因素[D]. 右江:右江民族医学院,2020.
|
[10] |
|
[11] |
COLOMBO M,RAPOSO G,THÉRY C. Biogenesis,secretion,and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol,2014,30:255-289.
|
[12] |
ZHANG Y, LIU Y F, LIU H Y,et al. Exosomes:biogenesis,biologic function and clinical potential[J]. Cell Biosci, 2019, 9:19. DOI: 10.1186/s13578-019-0282-2.
|
[13] |
MATHIEU M,MARTIN-JAULAR L,LAVIEU G,et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol,2019,21(1):9-17.
|
[14] |
CASTAÑO C, NOVIALS A, PÁRRIZAS M. Exosomes and diabetes[J]. Diabetes Metab Res Rev, 2019, 35(3):e3107. DOI: 10.1002/dmrr.3107.
|
[15] |
FAN R G, XIAO C C, WAN X Q,et al. Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics[J]. RNA Biol, 2019, 16(6):707-718. DOI: 10.1080/15476286.2019.1593094.
|
[16] |
GON Y, SHIMIZU T, MIZUMURA K,et al. Molecular techniques for respiratory diseases:microRNA and extracellular vesicles[J]. Respirology, 2020, 25(2):149-160. DOI: 10.1111/resp.13756.
|
[17] |
GARCIA-MARTIN R, WANG G X, BRANDÃO B B,et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention[J]. Nature, 2022, 601(7893):446-451. DOI: 10.1038/s41586-021-04234-3.
|
[18] |
AGBU P, CARTHEW R W. MicroRNA-mediated regulation of glucose and lipid metabolism[J]. Nat Rev Mol Cell Biol, 2021, 22(6):425-438. DOI: 10.1038/s41580-021-00354-w.
|
[19] |
CHANG P C, TSAI S C, JHENG Y H,et al. Soft-tissue wound healing by anti-advanced glycation end-products agents[J]. J Dent Res, 2014, 93(4):388-393. DOI: 10.1177/0022034514523785.
|
[20] |
HAN Y F, SUN T J, TAO R,et al. Clinical application prospect of umbilical cord-derived mesenchymal stem cells on clearance of advanced glycation end products through autophagy on diabetic wound[J]. Eur J Med Res, 2017, 22(1):11. DOI: 10.1186/s40001-017-0253-1.
|
[21] |
XIONG Y, CHEN L, YAN C C,et al. Circulating exosomal miR-20b-5p inhibition restores Wnt9b signaling and reverses diabetes-associated impaired wound healing[J]. Small, 2020, 16(3):e1904044. DOI: 10.1002/smll.201904044.
|
[22] |
XU Y, OUYANG L, HE L,et al. Inhibition of exosomal miR-24-3p in diabetes restores angiogenesis and facilitates wound repair via targeting PIK3R3[J]. J Cell Mol Med, 2020, 24(23):13789-13803. DOI: 10.1111/jcmm.15958.
|
[23] |
XIONG Y, CHEN L, YU T,et al. Inhibition of circulating exosomal microRNA-15a-3p accelerates diabetic wound repair[J]. Aging, 2020, 12(10):8968-8986. DOI: 10.18632/aging.103143.
|
[24] |
YAN C Q, CHEN J, WANG C,et al. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis[J]. Drug Deliv, 2022, 29(1):214-228. DOI: 10.1080/10717544.2021.2023699.
|
[25] |
ZHANG Y X, LI Q, YOUN J Y,et al. Protein phosphotyrosine phosphatase 1b(ptp1b)in calpain-dependent feedback regulation of vascular endothelial growth factor receptor(vegfr2)in endothelial cells:implications in vegf-dependent angiogenesis and diabetic wound healing[J]. J Biol Chem, 2017, 292(2):407-416. DOI: 10.1074/jbc.M116.766832.
|
[26] |
|
[27] |
|
[28] |
ZHU Y, WANG Y M, JIA Y C,et al. Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats[J]. and, 2019, 27(4):324-334. DOI: 10.1111/wrr.12708.
|
[29] |
LIU J, WANG J H, FU W,et al. MiR-195-5p and miR-205-5p in extracellular vesicles isolated from diabetic foot ulcer wound fluid decrease angiogenesis by inhibiting VEGFA expression[J]. Aging, 2021, 13(15):19805-19821. DOI: 10.18632/aging.203393.
|
[30] |
ZHU L Y, WANG G X, FISCHBACH S,et al. Suppression of microRNA-205-5p in human mesenchymal stem cells improves their therapeutic potential in treating diabetic foot disease[J]. Oncotarget, 2017, 8(32):52294-52303. DOI: 10.18632/oncotarget.17012.
|
[31] |
HUANG C, LUO W F, WANG Q,et al. Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p[J]. Stem Cell Res, 2021, 52:102235. DOI: 10.1016/j.scr.2021.102235.
|
[32] |
XU J, BAI S W, CAO Y D,et al. miRNA-221-3p in endothelial progenitor cell-derived exosomes accelerates skin wound healing in diabetic mice[J]. Diabetes Metab Syndr Obes, 2020, 13:1259-1270. DOI: 10.2147/DMSO.S243549.
|
[33] |
SALAZAR J J, ENNIS W J, KOH T J. Diabetes medications:impact on inflammation and wound healing[J]. J Diabetes Complications, 2016, 30(4):746-752. DOI: 10.1016/j.jdiacomp.2015.12.017.
|
[34] |
KIM H,WANG S Y,KWAK G,et al. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing[J]. Adv Sci,2019,6(20):1900513.
|
[35] |
FAN B Y, LI C, SZALAD A,et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes[J]. Diabetologia, 2020, 63(2):431-443. DOI: 10.1007/s00125-019-05043-0.
|
[36] |
GUO E Q, WANG L, WU J L,et al. Exosomes from microRNA-125b-modified adipose-derived stem cells promote wound healing of diabetic foot ulcers[J]. Curr Stem Cell Res Ther, 2024. DOI: 10.2174/011574888X287173240415050555.
|
[37] |
XU J W, WU W J, ZHANG L P,et al. The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment:correction with mesenchymal stem cell treatment[J]. Diabetes, 2012, 61(11):2906-2912. DOI: 10.2337/db12-0145.
|
[38] |
GE L F, WANG K Y, LIN H,et al. Engineered exosomes derived from miR-132-overexpresssing adipose stem cells promoted diabetic wound healing and skin reconstruction[J]. Front Bioeng Biotechnol, 2023, 11:1129538. DOI: 10.3389/fbioe.2023.1129538.
|
[39] |
GONDALIYA P, SAYYED A A, BHAT P,et al. Mesenchymal stem cell-derived exosomes loaded with miR-155 inhibitor ameliorate diabetic wound healing[J]. Mol Pharm, 2022, 19(5):1294-1308. DOI: 10.1021/acs.molpharmaceut.1c00669.
|
[40] |
SHI Y, WANG S, LIU D W,et al. Exosomal miR-4645-5p from hypoxic bone marrow mesenchymal stem cells facilitates diabetic wound healing by restoring keratinocyte autophagy[J]. Burns Trauma, 2024, 12:tkad058. DOI: 10.1093/burnst/tkad058.
|
[41] |
ZENG T T, WANG X Y, WANG W,et al. Endothelial cell-derived small extracellular vesicles suppress cutaneous wound healing through regulating fibroblasts autophagy[J]. Clin Sci, 2019, 133(9):CS20190008. DOI: 10.1042/CS20190008.
|
[42] |
LIANG Q, ZHOU D L, GE X Y,et al. Exosomes from adipose-derived mesenchymal stem cell improve diabetic wound healing and inhibit fibrosis via miR-128-1-5p/TGF-β1/Smad axis[J]. Mol Cell Endocrinol, 2024, 588:112213. DOI: 10.1016/j.mce.2024.112213.
|
[43] |
NDOSI M, WRIGHT-HUGHES A, BROWN S,et al. Prognosis of the infected diabetic foot ulcer:a 12-month prospective observational study[J]. Diabet Med, 2018, 35(1):78-88. DOI: 10.1111/dme.13537.
|