中国全科医学 ›› 2024, Vol. 27 ›› Issue (33): 4139-4146.DOI: 10.12114/j.issn.1007-9572.2024.0055

• 论著 • 上一篇    下一篇

非肥胖2型糖尿病患者肌肉量减少危险因素的列线图预测模型研究

张冰青1, 胡馨云1, 欧阳煜钦1, 向心月1, 汤文娟2, 冯文焕1,*()   

  1. 1.210008 江苏省南京市,南京中医药大学鼓楼临床医学院内分泌与代谢疾病医学中心
    2.210008 江苏省南京市,南京大学医学院附属鼓楼医院内分泌科
  • 收稿日期:2024-03-21 修回日期:2024-05-27 出版日期:2024-11-20 发布日期:2024-08-08
  • 通讯作者: 冯文焕

  • 作者贡献:

    张冰青负责临床数据收集、整理、分析,并撰写论文初稿;胡馨云负责绘制图表并协助统计分析;欧阳煜钦负责临床资料质量把控,协助初稿撰写;向心月协助参与论文内容及格式修改;汤文娟完善论文的审校;冯文焕提出研究思路,设计研究方案,完善论文最终内容及审校,并对论文负责。

  • 基金资助:
    江苏省自然科学基金面上项目(BK20201115); 中华国际交流基金会森美中华糖尿病科研基金(Z-2017-26-1902); 南京市卫生科技发展专项资金项目(YKK23072)

Study on Nomogram Prediction Model for Risk Factors of Muscle Mass Loss in Non-obese Patients with Type 2 Diabetes

ZHANG Bingqing1, HU Xinyun1, OUYANG Yuqin1, XIANG Xinyue1, TANG Wenjuan2, FENG Wenhuan1,*()   

  1. 1. Endocrine and Metabolic Disease Medical Center, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
    2. Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
  • Received:2024-03-21 Revised:2024-05-27 Published:2024-11-20 Online:2024-08-08
  • Contact: FENG Wenhuan

摘要: 背景 肌肉量减少能增加2型糖尿病(T2DM)患者高血糖及肌少症发生风险,中国成人T2DM以非肥胖者为主,这些患者较肥胖者更容易伴发肌肉量减少。 目的 建立个体化预测非肥胖T2DM患者肌肉量减少危险因素列线图预测模型。 方法 回顾性选取2018年1月—2023年9月南京大学医学院附属鼓楼医院内分泌科收治的非肥胖T2DM患者905例为研究对象,以简单随机抽样法按7∶3比例分为训练集(633例)和验证集(272例),收集两组患者的一般资料及临床指标并进行比较。根据多因素Logistic回归分析确定训练集肌肉量减少风险影响因素并构建列线图预测模型,采用受试者工作特征(ROC)曲线、Hosmer-Lemeshow校准曲线及临床决策曲线(DCA)评估列线图预测模型的预测价值和临床实用性。 结果 非肥胖T2DM患者肌肉量减少的患病率为42.3%(383/905)。训练集和验证集患者各项临床指标比较,差异均无统计学意义(P>0.05)。多因素Logistic回归分析结果显示,增龄(OR=1.039,95%CI=1.010~1.070,P=0.009)、男性(OR=3.425,95%CI=2.133~5.499,P<0.001)、BMI<23.5 kg/m2(OR=19.678,95%CI=11.319~34.210,P<0.001)、糖化血红蛋白升高(OR=1.196,95%CI=1.081~1.323,P<0.001)、内脏脂肪面积增加(OR=1.021,95%CI=1.010~1.032,P<0.001)是非肥胖T2DM患者肌肉量减少的独立危险因素。列线图预测模型预测训练集和验证集患者肌肉量减少发生风险的ROC曲线下面积(AUC)分别为0.825(95%CI=0.793~0.856,P<0.001)和0.806(95%CI=0.753~0.859,P<0.001)。Hosmer-Lemeshow拟合优度检验结果显示,拟合度较好(训练集:χ2=11.822,P=0.159;验证集:χ2=8.189,P=0.415)。Bootstrap法绘制模型校准图显示校准曲线与标准曲线贴合良好。DCA曲线显示当患者阈值概率为0.06~0.94时,使用列线图预测模型预测T2DM患者发生肌肉量减少的发生风险更有益。 结论 增龄、男性、BMI<23.5 kg/m2、糖化血红蛋白升高、内脏脂肪面积增加是非肥胖T2DM患者肌肉量减少的独立危险因素。本研究构建的列线图预测模型可个体化预测非肥胖T2DM患者伴发肌肉量减少风险,便于早期识别高危人群,利于制订个体化干预措施。

关键词: 糖尿病,2型, 非肥胖, 肌肉量减少, 列线图, 危险因素

Abstract:

Background

Muscle mass loss increases the risk of hyperglycaemia and sarcopenia in patients with type 2 diabetes mellitus (T2DM), and Chinese adults with T2DM are predominantly non-obese, who are more likely to be associated with muscle mass loss than the obese.

Objective

To establish an individualized Nomogram prediction model for the risk factors of muscle mass loss in non-obese patients with T2DM.

Methods

A retrospective study was conducted to select 905 non-obese patients with T2DM admitted to the Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University from January 2018 to September 2023. The patients were divided into a training set (n=633) and a validation set (n=272) using simple random sampling at a ratio of 7∶3, and the general data and clinical indexes of the two groups of patients were collected and compared. Multivariate Logistic regression analysis was performed to determine risk factors for muscle mass loss in the training set and a Nomogram prediction model was constructed. The predictive value and clinical utility of the Nomogram prediction model were evaluated using receiver operating characteristic (ROC) curve, Hosmer-Lemeshow calibration curve, and decision curve analysis (DCA), respectively.

Results

The prevalence of muscle mass loss in non-obese patients with T2DM was 42.3% (383/905). Comparison of the clinical indicators of the patients in the training and validation sets showed no statistically significant differences (P>0.05). Multivariate Logistic regression analysis showed that age (OR=1.039, 95%CI=1.010-1.070, P=0.009), male (OR=3.425, 95%CI=2.133-5.499, P<0.001), BMI<23.5 kg/m2 (OR=19.678, 95%CI=11.319-34.210, P<0.001), elevated HbA1c (OR=1.196, 95%CI=1.081-1.323, P<0.001), increased visceral fat area (OR=1.021, 95%CI=1.010-1.032, P<0.001) were independent risk factors for muscle mass loss in non-obese patients with T2DM. The area under curve (AUC) of the ROC for the Nomogram prediction model to predict the risk of muscle mass loss occurring in patients in the training and validation sets was 0.825 (95%CI=0.793-0.856, P<0.001) and 0.806 (95%CI=0.753-0.859, P<0.001), respectively. The Hosmer-Lemeshow test showed that the model had a good fit (training set: χ2=11.822, P=0.159; validation set: χ2=8.189, P=0.415). Bootstrap method of plotting the calibration of the model showed that the calibration curves fitted well to the standard curves. The DCA curves showed that it was more beneficial to use the Nomogram prediction model to predict the incidence risk of muscle mass loss in patients with T2DM when the threshold probability of the patient was 0.06 to 0.94.

Conclusion

Age, male, BMI<23.5 kg/m2, elevated HbA1c, and increased visceral fat area are independent risk factors for muscle mass loss in non-obese patients with T2DM. The Nomogram prediction model established in this study can individually predict the risk of muscle mass loss in non-obese patients with T2DM, which facilitates the early identification of high-risk groups and the development of individualised interventions.

Key words: Diabetes mellitus, type 2, Non-obesity, Muscle mass loss, Nomogram, Risk factors

中图分类号: