[1] |
LIAW W,KAKADIARIS I A. Artificial intelligence and family medicine:better together[J]. Fam Med,2020,52(1):8-10.
|
[2] |
KONG X,AI B,KONG Y,et al. Artificial intelligence:a key to relieve China's insufficient and unequally-distributed medical resources[J]. Am J Transl Res,2019,11(5):2632-2640.
|
[3] |
AGRAWAL R,PRABAKARAN S. Big data in digital healthcare:lessons learnt and recommendations for general practice[J]. Heredity(Edinb),2020,124(4):525-534.
|
[4] |
SØRENSEN N,BEMMAN B,JENSEN M B,et al. Machine learning in general practice:scoping review of administrative task support and automation[J]. BMC Prim Care,2023,24(1):14.
|
[5] |
ABBASGHOLIZADEH RAHIMI S, LÉGARÉ F, SHARMA G,et al. Application of artificial intelligence in community-based primary health care:systematic scoping review and critical appraisal[J]. J Med Internet Res, 2021, 23(9):e29839. DOI: 10.2196/29839.
|
[6] |
KUEPER J K, TERRY A L, ZWARENSTEIN M,et al. Artificial intelligence and primary care research:a scoping review[J]. Ann Fam Med, 2020, 18(3):250-258. DOI: 10.1370/afm.2518.
|
[7] |
GREENER J G, KANDATHIL S M, MOFFAT L,et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23(1):40-55. DOI: 10.1038/s41580-021-00407-0.
|
[8] |
SHICKEL B, TIGHE P J, BIHORAC A,et al. Deep EHR:a survey of recent advances in deep learning techniques for electronic health record(EHR)analysis[J]. IEEE J Biomed Health Inform, 2018, 22(5):1589-1604. DOI: 10.1109/JBHI.2017.2767063.
|
[9] |
HOBENSACK M,SONG J,SCHARP D,et al. Machine learning applied to electronic health record data in home healthcare:a scoping review[J]. Int J Med Inform,2023,170:104978.
|
[10] |
BOUWMEESTER W,ZUITHOFF N P A,MALLETT S,et al. Reporting and methods in clinical prediction research:a systematic review[J]. PLoS Med,2012,9(5):1-12.
|
[11] |
CHOWDHURY M Z I,TURIN T C. Variable selection strategies and its importance in clinical prediction modelling[J]. Fam Med Community Health,2020,8(1):e000262.
|
[12] |
TRICCO A,LILLIE E,ZARIN W,et al. PRISMA extension for scoping reviews(PRISMA-ScR):checklist and explanation[J]. Ann Intern Med,2018,169(7):467-473.
|
[13] |
STARFIELD B. A framework for primary care research[J]. J Fam Pract,1996,42(2):181-185.
|
[14] |
MOONS K G M, WOLFF R F, RILEY R D,et al. PROBAST:a tool to assess risk of bias and applicability of prediction model studies:explanation and elaboration[J]. Ann Intern Med, 2019, 170(1):W1-33. DOI: 10.7326/M18-1377.
|
[15] |
CHRISTODOULOU E, MA J, COLLINS G S,et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models[J]. J Clin Epidemiol, 2019, 110:12-22. DOI: 10.1016/j.jclinepi.2019.02.004.
|
[16] |
KABORÉ R, HALLER M C, HARAMBAT J,et al. Risk prediction models for graft failure in kidney transplantation:a systematic review[J]. Nephrol Dial Transplant, 2017, 32(suppl_2):ii68-76. DOI: 10.1093/ndt/gfw405.
|
[17] |
MASCONI K L,MATSHA T E,ECHOUFFO-TCHEUGUI J B,et al. Reporting and handling of missing data in predictive research for prevalent undiagnosed type 2 diabetes mellitus:a systematic review[J]. EPMA J,2015,6(1):7.
|
[18] |
MASCONI K L, MATSHA T E, ERASMUS R T,et al. Effects of different missing data imputation techniques on the performance of undiagnosed diabetes risk prediction models in a mixed-ancestry population of South Africa[J]. PLoS One, 2015, 10(9):e0139210. DOI: 10.1371/journal.pone.0139210.
|
[19] |
TIERNEY N J,HARDEN F A,HARDEN M J,et al. Using decision trees to understand structure in missing data[J]. BMJ Open,2015,5(6):e007450.
|
[20] |
HOWEY R,CLARK A D,NAAMANE N,et al. A Bayesian network approach incorporating imputation of missing data enables exploratory analysis of complex causal biological relationships[J]. PLoS Genet,2021,17(9):e1009811.
|
[21] |
HAUN M W, SIMON L, SKLENAROVA H,et al. Predicting anxiety in cancer survivors presenting to primary care-a machine learning approach accounting for physical comorbidity[J]. Cancer Med, 2021, 10(14):5001-5016. DOI: 10.1002/cam4.4048.
|
[22] |
SAVAGE R, MESSENGER M, NEAL R D,et al. Development and validation of multivariable machine learning algorithms to predict risk of cancer in symptomatic patients referred urgently from primary care:a diagnostic accuracy study[J]. BMJ Open, 2022, 12(4):e053590. DOI: 10.1136/bmjopen-2021-053590.
|
[23] |
GOLDSTEIN B A,NAVAR A M,PENCINA M J,et al. Opportunities and challenges in developing risk prediction models with electronic health records data:a systematic review[J]. J Am Med Inform Assoc,2017,24(1):198-208.
|
[24] |
KHARRAZI H,CHI W,CHANG H Y,et al. Comparing population-based risk-stratification model performance using demographic,diagnosis and medication data extracted from outpatient electronic health records versus administrative claims[J]. Med Care,2017,55(8):789-796.
|
[25] |
AZMI J,ARIF M,NAFIS M T,et al. A systematic review on machine learning approaches for cardiovascular disease prediction using medical big data[J]. Med Eng Phys,2022,105:103825.
|
[26] |
COLLINS G S,DHIMAN P,ANDAUR NAVARRO C L,et al. Protocol for development of a reporting guideline(TRIPOD-AI)and risk of bias tool(PROBAST-AI)for diagnostic and prognostic prediction model studies based on artificial intelligence[J]. BMJ Open,2021,11(7):e048008.
|