Page 56 - 2022-34-中国全科医学
P. 56
http://www.chinagp.net E-mail:zgqkyx@chinagp.net.cn ·4277·
Japan Epidemiology Collaboration on Occupational Health Study[J]. validation of a deep learning based diabetes prediction system using
PLoS One,2015,10(11):e0142779. a nationwide population-based cohort[J]. Diabetes Metab J,
[23]WANG A,CHEN G,SU Z,et al. Risk scores for predicting incidence 2021,45(4):515-525. DOI:10.4093/dmj.2020.0081.
of type 2 diabetes in the Chinese population:the Kailuan prospective [40]NG K,SUN J,HU J,et al. Personalized predictive modeling
study[J]. Sci Rep,2016,6:26548. DOI:10.1038/srep26548. and risk factor identification using patient similarity[J]. AMIA Jt
[24]LIU X,FINE J P,CHEN Z,et al. Prediction of the 20-year Summits Transl Sci Proc,2015,2015:132-136.
incidence of diabetes in older Chinese:application of the competing [41]COWLEY L E,FAREWELL D M,MAGUIRE S,et al.
risk method in a longitudinal study[J]. Medicine(Baltimore), Methodological standards for the development and evaluation of
2016,95(40):e5057. DOI:10.1097/MD.0000000000005057. clinical prediction rules:a review of the literature[J]. Diagn
[25]MIYAKOSHI T,OKA R,NAKASONE Y,et al. Development of Progn Res,2019,3:16. DOI:10.1186/s41512-019-0060-y.
new diabetes risk scores on the basis of the current definition of diabetes [42]BRILLEMAN S L,CROWTHER M J,MORENO-BETANCUR M,
in Japanese subjects[J]. Endocr J,2016,63(9):857-865. et al. Joint longitudinal and time-to-event models for multilevel
[26]ZHANG M,ZHANG H,WANG C,et al. Development and hierarchical data[J]. Stat Methods Med Res,2019,28(12):
validation of a risk-score model for type 2 diabetes:a cohort study 3502-3515. DOI:10.1177/0962280218808821.
of a rural adult Chinese population[J]. PLoS One,2016,11(4): [43]HACKETT R A,STEPTOE A. Type 2 diabetes mellitus and psychological
e0152054. DOI:10.1371/journal.pone.0152054. stress:a modifiable risk factor[J]. Nat Rev Endocrinol,2017,13(9):
[27]CHEN X,WU Z,CHEN Y,et al. Risk score model of type 2 547-560. DOI:10.1038/nrendo.2017.64.
diabetes prediction for rural Chinese adults:the Rural Deqing Cohort [44]HOSSEINI Z,WHITING S J,VATANPARAST H. Type 2
Study[J]. J Endocrinol Invest,2017,40(10):1115-1123. diabetes prevalence among Canadian adults:dietary habits and
[28]ZHANG H,WANG C,REN Y,et al. A risk-score model for sociodemographic risk factors[J]. Appl Physiol Nutr Metab,
predicting risk of type 2 diabetes mellitus in a rural Chinese adult 2019,44(10):1099-1104. DOI:10.1139/apnm-2018-0567.
population:a cohort study with a 6-year follow-up[J]. Diabetes [45]KAUTZKY-WILLER A,HARREITER J,PACINI G. Sex and
Metab Res Rev,2017,33(7):e2911. DOI:10.1002/dmrr.2911. gender differences in risk,pathophysiology and complications of type 2
[29]WEN J,HAO J,LIANG Y,et al. A non-invasive risk score for diabetes mellitus[J]. Endocr Rev,2016,37(3):278-316.
predicting incident diabetes among rural Chinese people:a village- [46]ESTEGHAMATI A,ETEMAD K,KOOHPAYEHZADEH J,et al.
based cohort study[J]. PLoS One,2017,12(11):e0186172. Trends in the prevalence of diabetes and impaired fasting glucose in
[30]YATSUYA H,LI Y,HIRAKAWA Y,et al. A point system for association with obesity in Iran:2005—2011[J]. Diabetes Res Clin
predicting 10-year risk of developing type 2 diabetes mellitus in Pract,2014,103(2):319-327. DOI:10.1016/j.diabres.2013.12.034.
Japanese men:Aichi Workers' Cohort Study[J]. J Epidemiol, [47]MACCALLUM R C,ZHANG S,PREACHER K J,et al. On the
2018,28(8):347-352. DOI:10.2188/jea.JE20170048. practice of dichotomization of quantitative variables[J]. Psychol
[31]HA K H,LEE Y H,SONG S O,et al. Development and validation Methods,2002,7(1):19-40. DOI:10.1037/1082-989x.7.1.19.
of the Korean Diabetes Risk Score:a 10-year national cohort study [48]ROYSTON P,SAUERBREI W. Multivariable model-building:
[J]. Diabetes Metab J,2018,42(5):402-414. a pragmatic approach to regression analysis based on fractional
[32]HAN X,WANG J,LI Y,et al. Development of a new scoring polynomials for modelling continuous variables[M]. Chichester:
system to predict 5-year incident diabetes risk in middle-aged and John Wiley & Sons,2008.
older Chinese[J]. Acta Diabetol,2018,55(1):13-19. [49]VUONG K,MCGEECHAN K,ARMSTRONG B K,et al. Risk
[33]HU H,NAKAGAWA T,YAMAMOTO S,et al. Development and prediction models for incident primary cutaneous melanoma:a
validation of risk models to predict the 7-year risk of type 2 diabetes: systematic review[J]. JAMA Dermatol,2014,150(4):434-
the Japan Epidemiology Collaboration on Occupational Health Study[J]. 444. DOI:10.1001/jamadermatol.2013.8890.
J Diabetes Investig,2018,9(5):1052-1059. [50]ZHANG Q,WANG L. Moderation analysis with missing data in the
[34]WANG K,GONG M,XIE S,et al. Nomogram prediction for the predictors[J]. Psychol Methods,2017,22(4):649-666.
3-year risk of type 2 diabetes in healthy mainland China residents[J]. [51]STEYERBERG E W. Clinical prediction models:a practical
EPMA Journal,2019,10(3):227-237. approach to development,validation,and updating[M]. New
[35]GUNTHER S H,KHOO C M,TAI E S,et al. Serum acylcarnitines York:Springer,2009.
and amino acids and risk of type 2 diabetes in a multiethnic Asian [52]STEYERBERG E W,HARRELL F E J R,BORSBOOM G J,et al.
population[J]. BMJ Open Diabetes Res Care,2020,8(1): Internal validation of predictive models:efficiency of some procedures
e001315. DOI:10.1136/bmjdrc-2020-001315. for Logistic regression analysis[J]. J Clin Epidemiol,2001,54(8):
[36]SHAO X,WANG Y,HUANG S,et al. Development and 774-781. DOI:10.1016/s0895-4356(01)00341-9.
validation of a prediction model estimating the 10-year risk for type 2 [53]AUSTIN P C,STEYERBERG E W. Events per variable(EPV)and
diabetes in China[J]. PLoS One,2020,15(9 ):e0237936. the relative performance of different strategies for estimating the out-of-
[37]ASGARI S,KHALILI D,ZAYERI F,et al. Dynamic prediction sample validity of Logistic regression models[J]. Stat Methods Med
models improved the risk classification of type 2 diabetes compared with Res,2017,26(2):796-808. DOI:10.1177/0962280214558972.
classical static models[J]. J Clin Epidemiol,2021,140:33-43. [54]CASTALDI P J,DAHABREH I J,IOANNIDIS J P. An empirical
[38]OH T J,MOON J H,CHOI S H,et al. Development of a clinical assessment of validation practices for molecular classifiers[J]. Brief
risk score for incident diabetes:a 10-year prospective cohort study Bioinform,2011,12(3):189-202. DOI:10.1093/bib/bbq073.
[J]. J Diabetes Investig,2021,12(4):610-618. (收稿日期:2022-05-16;修回日期:2022-09-11)
[39]RHEE S Y,SUNG J M,KIM S,et al. Development and (本文编辑:陈俊杉)